Project description:Post-translational modification of proteins through methylation plays important regulatory role in biological processes. Lysine methylation on histone proteins is known to play important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. Herein, we use high resolution mass spectrometry to global screening methylated substrates and lysine- methylation sites in tomato (Solanum Lycopersicum). A total of 241 sites of lysine methylation (mono-, di-, tri-methylation) in 176 proteins with diverse biological functions and subcellular localized were identified in mix tomato with different maturity. Two putative methylation motifs were detected. KEGG pathway category enrichment analysis indicated that methylated proteins are implicated in the regulation of diverse metabolic processes, including arbon fixation in photosynthetic organisms, pentose phosphate pathway, fructose and mannose metabolism, and cysteine and methionine metabolism. Three representative proteins were selected to analyze the effect of methylated modification on protein function. In addition, quantitative RT-PCR further validated the gene expression level of some key methylated proteins during fruit ripening, which are involved in oxidation reduction process, stimulus and stress, energy metabolism, signaling transduction, fruit ripening and senescence. These data represent the first report of methylation proteomic and supply abundant resources for exploring the functions of lysine methylation in tomato and other plants.
Project description:Transcriptome analysis of 7 tissues of commercial tomato (S. lycopersicum cv MoneyMaker) and its wild red-fruited ancestor (S. pimpinellifolium LA0722) genotypes performed to assess expression level of tomato transcriptome and to aid whole genome annotation. Sequencing of fruit at 3 different developmental stages will help to assess gene regulation through ripening.
Project description:Gene expression in three stages of ripening tomato fruit (variety Ailsa Craig) was determined with the EUTOM3 Affymetrix array in order to compare with degradrome sequencing data from study GSE42661, treated as RNAseq.
Project description:Tomato fruit ripening is associated with a dramatic increase in susceptibility to the fungal pathogen Botrytis cinerea, the causal agent of gray mold. Mature green fruit, prior to ripening, are largely resistant to B. cinerea, whereas red fruit, at the end of ripening, are susceptible to B. cinerea infection. We used microarrays to detail the gene expression changes that are induced by B. cinerea when tomato fruit at unripe and ripe stages are infected. Keywords: plant responses to pathogens
Project description:For exploring whether mRNA m6A modification participates in the regulation of tomato fruit ripening, we performed m6A-seq in three tomato fruit samples, including wild-type (WT) at 39 days post-anthesis (DPA) and 42 DPA, and Cnr mutant at 42 DPA, with three biological replicates. mRNA methylome analysis reveals that m6A methylation is a prevalent modification in mRNA of tomato fruit and the m6A sites are predominantly enriched in the stop codon and 3’ untranslated region, where m6A deposition has been proved to negatively correlate with gene expression. Hundreds of ripening-induced and ripening-repressed genes, including the SlDML2, were found to harbour changed m6A levels during fruit ripening or in the Cnr mutant, implicating the involvement of m6A modification in the regulation of fruit ripening.
Project description:In the present study, we demonstrated that application of CaCl2 to ‘Micro Tom’ tomato fruit (mature green stage) delayed fruit senescence and mature.
Project description:Tomato fruit ripening is associated with a dramatic increase in susceptibility to the fungal pathogen Botrytis cinerea, the causal agent of gray mold. Mature green fruit, prior to ripening, are largely resistant to B. cinerea, whereas red fruit, at the end of ripening, are susceptible to B. cinerea infection. We used microarrays to detail the gene expression changes that are induced by B. cinerea when tomato fruit at unripe and ripe stages are infected. Experiment Overall Design: Tomato fruit at mature green and red ripe stages were wound inoculated with a water suspension of B. cinerea conidia. Twenty four hours post inoculation fruit pericarp and epicarp tissue around and including the inoculation sites was collected and the total RNA extracted. Total RNA was also collected from healthy and mock inoculated fruit.