Project description:The activation of the transcription factor Hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small-molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high throughput screen led to the identification of a class of aminoalkyl-substituted compounds that inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations but did not affect expression levels of genes outside of the HIF-1 pathway. Lead structure BAY 87-2243 was found to inhibit HIF-1α protein accumulation under hypoxic conditions in NSCLC cell line H460 but had no effect on HIF-1α protein accumulation and HIF target gene expression in RCC4 cells lacking VHL activity or in H460 cells after inhibition of HIF prolyl hydroxylase activity. BAY 87-2243 had no effect on HIF-α-mRNA levels. Antitumor activity of BAY 87-2243 and suppression of HIF-1 target gene expression in vivo was demonstrated in a H460 xenograft model. BAY 87-2243 did not inhibit cell proliferation under standard conditions. However under glucose depletion, a condition favoring mitochondrial ATP generation as energy source, BAY 87-2243 inhibited cell proliferation in the nanomolar range. Further experiments revealed that BAY 87-2243 inhibits mitochondrial production of reactive oxygen species (ROS) by blocking complex I activity but has no effect on complex III activity. Lowering of mitochondrial ROS production to reduce hypoxia-induced HIF-1 activity in tumors might be an interesting therapeutic approach to overcome chemo- and radiotherapy-resistance of hypoxic tumors. We used microarrays to detail the global programme of gene expression that is induced in NSCLC cell line H460 upon hypoxia (16 h incubation at 1 % pO2) and evaluated a dose-dependent effect of our HIF-1-pathway inhibitor BAY 87-2243 on genes tthat are affected by hypoxia. Specificity of BAY 87-2243 for the suppression of HIF-1-mediated gene transcription on a genome-wide scale was evaluated by microarray hybridizations using Affymetrix GeneChip Human Gene 1.0 ST arrays. RNA from normoxic H460 cells and from hypoxic H460 cells incubated with 1, 10 and 100 nM BAY 87-2243 respectively was subjected to array hybridization. Of those 30 genes that were most strongly suppressed by 100 nM BAY 87-2243 in hypoxic H460 cells compared to DMSO-treated hypoxic H460 cells, virtually all of them are induced by prior hypoxia and most of these genes have been described in the literature as HIF-1 target genes
Project description:The activation of the transcription factor Hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small-molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high throughput screen led to the identification of a class of aminoalkyl-substituted compounds that inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations but did not affect expression levels of genes outside of the HIF-1 pathway. Lead structure BAY 87-2243 was found to inhibit HIF-1α protein accumulation under hypoxic conditions in NSCLC cell line H460 but had no effect on HIF-1α protein accumulation and HIF target gene expression in RCC4 cells lacking VHL activity or in H460 cells after inhibition of HIF prolyl hydroxylase activity. BAY 87-2243 had no effect on HIF-α-mRNA levels. Antitumor activity of BAY 87-2243 and suppression of HIF-1 target gene expression in vivo was demonstrated in a H460 xenograft model. BAY 87-2243 did not inhibit cell proliferation under standard conditions. However under glucose depletion, a condition favoring mitochondrial ATP generation as energy source, BAY 87-2243 inhibited cell proliferation in the nanomolar range. Further experiments revealed that BAY 87-2243 inhibits mitochondrial production of reactive oxygen species (ROS) by blocking complex I activity but has no effect on complex III activity. Lowering of mitochondrial ROS production to reduce hypoxia-induced HIF-1 activity in tumors might be an interesting therapeutic approach to overcome chemo- and radiotherapy-resistance of hypoxic tumors. We used microarrays to detail the global programme of gene expression that is induced in NSCLC cell line H460 upon hypoxia (16 h incubation at 1 % pO2) and evaluated a dose-dependent effect of our HIF-1-pathway inhibitor BAY 87-2243 on genes tthat are affected by hypoxia.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.