Project description:The Formalin-Fixed Paraffin-Embedded (FFPE) samples on selected breast cancer subtypes (ER+/Her2-, ER+/Her2+, ER-/Her2+, and ER-/Her2-) and their paired fresh fine needle aspirated biopsies (FNA) were investigated. The cases represented different subtypes of breast cancers based on their clinical receptors ER (E) and Her2 (H) status to demonstrate the ability of gene profiles to differentiate these tumors. Compared to FNA specimens, FFPE samples yielded relatively more degraded RNA, and 80% of the samples deemed suitable for cDNA-mediated annealing, selection, extension and ligation (DASL) assay. It is able to demonstrate that gene profiles from FFPE microarrays were reproducible and correlated well with the corresponding gene profiles from FNA microarrays. The gene profiles from both FNA and FFPE could differentiate the four breast cancer subtypes, and the expression levels of corresponding gene set were consistent with qRT-PCR and correlated to the clinical outcomes on published microarray data. It supports the use of FFPE specimens to develop a prognostic tool for breast cancers which can obviate the need for fresh specimens.
Project description:The Formalin-Fixed Paraffin-Embedded (FFPE) samples on selected breast cancer subtypes (ER+/Her2-, ER+/Her2+, ER-/Her2+, and ER-/Her2-) and their paired fresh fine needle aspirated biopsies (FNA) were investigated. The cases represented different subtypes of breast cancers based on their clinical receptors ER (E) and Her2 (H) status to demonstrate the ability of gene profiles to differentiate these tumors. Compared to FNA specimens, FFPE samples yielded relatively more degraded RNA, and 80% of the samples deemed suitable for cDNA-mediated annealing, selection, extension and ligation (DASL) assay. It is able to demonstrate that gene profiles from FFPE microarrays were reproducible and correlated well with the corresponding gene profiles from FNA microarrays. The gene profiles from both FNA and FFPE could differentiate the four breast cancer subtypes, and the expression levels of corresponding gene set were consistent with qRT-PCR and correlated to the clinical outcomes on published microarray data. It supports the use of FFPE specimens to develop a prognostic tool for breast cancers which can obviate the need for fresh specimens.
Project description:The Formalin-Fixed Paraffin-Embedded (FFPE) samples on selected breast cancer subtypes (ER+/Her2-, ER+/Her2+, ER-/Her2+, and ER-/Her2-) and their paired fresh fine needle aspirated biopsies (FNA) were investigated. The cases represented different subtypes of breast cancers based on their clinical receptors ER (E) and Her2 (H) status to demonstrate the ability of gene profiles to differentiate these tumors. Compared to FNA specimens, FFPE samples yielded relatively more degraded RNA, and 80% of the samples deemed suitable for cDNA-mediated annealing, selection, extension and ligation (DASL) assay. It is able to demonstrate that gene profiles from FFPE microarrays were reproducible and correlated well with the corresponding gene profiles from FNA microarrays. The gene profiles from both FNA and FFPE could differentiate the four breast cancer subtypes, and the expression levels of corresponding gene set were consistent with qRT-PCR and correlated to the clinical outcomes on published microarray data. It supports the use of FFPE specimens to develop a prognostic tool for breast cancers which can obviate the need for fresh specimens. 25 FNA specimens were processed for direct hybridization assays using Illumina Human-Ref8 version 3 BeadChips. Invasive ductal carcinoma (IDC)-type subtypes ER+/Her2-, ER+/Her2+, ER-/Her2+, and ER-/Her2- (ER: estrogen receptor, HER2: human epidermal growth factor receptor 2) were analyzed.