Project description:Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double strand break (DSB) formation, but the role and precise landscape of histone modifications at hotspots remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is strikingly elevated, and H3K4me3 is not significantly enriched. Remarkably, elimination of H3K9ac reduced binding of the DSB-inducing enzyme Rec12 and DSB at hotspots. We also found that the H3K4 metyltransferase Set1 promotes DSB formation at some loci, but it restricts Rec12 binding to hotspots. These results suggest that H3K9ac rather than H3K4me3 is a hotspot-associated mark involved in meiotic DSB formation in fission yeast.
Project description:Crossovers formed by recombination between homologous chromosomes are important for proper homolog segregation during meiosis and for generation of genetic diversity. Optimal molecular analysis of DNA intermediates of recombination requires synchronous cultures. We previously described a mutant, pat1-as2, of the fission yeast Schizosaccharomyces pombe that undergoes synchronous meiosis at 25°C when an ATP analog is added to the culture. Here, we compare recombination intermediates in pat1-as2 at 25°C with those in the widely used pat1-114 temperature-sensitive mutant at 34°C, a temperature higher than optimal. DNA double-strand breaks at most hotspots are similarly abundant in the two conditions but, remarkably, a few hotspots are distinctly deficient at 25°C. In both conditions Holliday junctions at DNA break hotspots form more frequently between sister chromatids than between homologs, but a novel species, perhaps arising from invasion by only one end of broken DNA, is more readily observed at 25°C. Our results confirm the validity of previous assays of recombination intermediates in S. pombe and provide new information on the mechanism of meiotic recombination. DNA double-strand break analysis by immunoprecipation of Rec12-FLAG covalently linked to DNA (without exogenous crosslinking agent used) following meiotic induction via pat1-114 or pat1-as2 alleles
Project description:Homologous recombination is the key process that generates genetic diversity and drives evolution. SPO11 protein triggers recombination by introducing DNA double stranded breaks at discreet areas of the genome called recombination hotspots. The hotspot locations are largely determined by the DNA binding specificity of the PRDM9 protein in human, mice and most other mammals. In budding yeast Saccharomyces cerevisae, which lacks a Prdm9 gene, meiotic breaks are formed opportunistically in the regions of accessible chromatin, primarily at gene promoters. The genome-wide distribution of hotspots in this organism can be altered by tethering Spo11 protein to Gal4 recognition sequences in the strain expressing Spo11 attached to the DNA binding domain of the Gal4 transcription factor. To establish whether similar re-targeting of meiotic breaks can be achieved in PRDM9-containing organisms we have generated a Gal4BD-Spo11 mouse that expresses SPO11 protein joined to the DNA binding domain of yeast Gal4. We have mapped the genome-wide distribution of the recombination initiation sites in the Gal4BD-Spo11 mice. More than two hundred of the hotspots in these mice were novel and were likely defined by Gal4BD, as the Gal4 consensus motif was clustered around the centers in these hotspots. Surprisingly, meiotic DNA breaks in the Gal4BD-Spo11 mice were significantly depleted near the ends of chromosomes. The effect is particularly striking at the pseudoautosomal region of the X and Y chromosomes – normally the hottest region in the genome. Our data suggest that specific, yet-unidentified factors influence the initiation of meiotic recombination at subtelomeric chromosomal regions. Detection of meiotic double strand breaks in mice with a hypomorphic Spo11 allele.
Project description:Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in budding and fission yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to several hundred times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is a major unsolved problem, although transcription factors determine some hotspots. We report here the discovery that three coiled-coil proteins -- Rec25, Rec27, and Mug20 -- bind essentially all hotspots with unprecedented, high specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate that these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose here a new paradigm for hotspot determination and crossover control by linear element proteins.
Project description:Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in budding and fission yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to several hundred times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is a major unsolved problem, although transcription factors determine some hotspots. We report here the discovery that three coiled-coil proteins -- Rec25, Rec27, and Mug20 -- bind essentially all hotspots with unprecedented, high specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate that these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose here a new paradigm for hotspot determination and crossover control by linear element proteins.
Project description:Viable gamete formation requires segregation of homologous chromosomes connected, in most species, by crossovers. DNA double-strand break (DSB) formation and the resulting crossovers are regulated at multiple levels to prevent overabundance along chromosomes. Meiotic cells coordinate these events between distant sites, but the physical basis of long-distance chromosomal communication has been unknown. We show that DSB hotspots up to ~200 kb (~35 cM) apart form clusters via hotspot-binding proteins Rec25 and Rec27 in fission yeast. Clustering coincides with hotspot competition and interference over similar distances. Without Tel1 (ATM tumor-suppressor homolog), DSB and crossover interference become negative, reflecting coordinated action along a chromosome. These results indicate that DSB hotspots within a limited chromosomal region and bound by their protein determinants form a clustered structure that, via Tel1, allows only one DSB per region. Such a “roulette” process among clusters explains the observed pattern of crossover interference in fission yeast. Key structural and regulatory components of clusters are phylogenetically conserved, suggesting conservation of this vital regulation. Based on these observations, we discuss variations on a model in which clustering and competition between DSB sites leads to DSB interference and in turn produces crossover interference.
Project description:Viable gamete formation requires segregation of homologous chromosomes connected, in most species, by crossovers. DNA double-strand break (DSB) formation and the resulting crossovers are regulated at multiple levels to prevent overabundance along chromosomes. Meiotic cells coordinate these events between distant sites, but the physical basis of long-distance chromosomal communication has been unknown. We show that DSB hotspots up to ~200 kb (~35 cM) apart form clusters via hotspot-binding proteins Rec25 and Rec27 in fission yeast. Clustering coincides with hotspot competition and interference over similar distances. Without Tel1 (ATM tumor-suppressor homolog), DSB and crossover interference become negative, reflecting coordinated action along a chromosome. These results indicate that DSB hotspots within a limited chromosomal region and bound by their protein determinants form a clustered structure that, via Tel1, allows only one DSB per region. Such a “roulette” process among clusters explains the observed pattern of crossover interference in fission yeast. Key structural and regulatory components of clusters are phylogenetically conserved, suggesting conservation of this vital regulation. Based on these observations, we discuss variations on a model in which clustering and competition between DSB sites leads to DSB interference and in turn produces crossover interference.
Project description:Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double strand break (DSB) formation, but the role and precise landscape of histone modifications at hotspots remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is strikingly elevated, and H3K4me3 is not significantly enriched. Remarkably, elimination of H3K9ac reduced binding of the DSB-inducing enzyme Rec12 and DSB at hotspots. We also found that the H3K4 metyltransferase Set1 promotes DSB formation at some loci, but it restricts Rec12 binding to hotspots. These results suggest that H3K9ac rather than H3K4me3 is a hotspot-associated mark involved in meiotic DSB formation in fission yeast. S.pombe cells in a pat1-114 background were induced to enter meiosis by the haploid meiosis system, and harvested one hour after the induction. ChIP were performed using anti-H3Cter, H3K9ac, -H3K14ac and -H3K4me3 antibodies. pat1-114 rad50S rec12+-FLAG cells in a wild type, H3K9A or set1+ deletion background were induced to enter meiosis by the haploid meiosis system, and harvested five hours after the induction. ChIP were performed using anti-FLAG antibodies.