Project description:Genome wide DNA methylation profiling of Rett syndrome monozygotic twins. The Illumina Infinium 450k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles in primary skin fibroblast cells from Rett syndrome monozygotic twins.
Project description:Genome wide DNA methylation profiling of Rett syndrome monozygotic twins. The Illumina Infinium 450k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles in primary skin fibroblast cells from Rett syndrome monozygotic twins. Bisulphite converted DNA from the 2 samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:This project contains genome-wide DNA methylation data generated using the HumanMethylation450 BeadChip (Illumina), for 79 rheumatoid arthritis (RA) discordant monozygotic twin pairs. By investigating disease discordant monozygotic twins, DNA methylation can be assessed without the confounding influence of genetic heterogeneity which often affects case-control epigenome-wide association studies of common diseases. Twins were recruited from two cohorts; Arthritis Research UK in Manchester and TwinsUK in London.
Project description:Autism spectrum disorder(ASD) is a complex neurodevelopmental disorder. Aberrant DNA methylation has been observed in ASD but the mechanisms remain largely unknown. Here, we employed discordant monozygotic twins to investigate the contribution of DNA methylation to ASD etiology. Genome-wide DNA methylation analysis was performed using samples obtained from five pairs of ASD-discordant monozygotic twins, which revealed a total of 2397 differentially methylated genes. Further, such gene list was annotated with Kyoto Encyclopedia of Genes and Genomes and demonstrated predominant activation of neurotrophin signaling pathway in ASD-discordant monozygotic twins. The methylation of SH2B1 gene was further confirmed in the ASD-discordant, ASD-concordant monozygotic twins, and a set of 30 pairs of sporadic case-control by bisulfite-pyrosequencing. The results showed that there was a greater DNA methylation difference in ASD-discordant monozygotic twins than ASD-concordant monozygotic twins. Further, verification of the Chr.16:28856743 of SH2B1 showed significant differences in DNA methylation between case and control. These results suggest abnormal methylation of SH2B1 is associated with ASD etiology. Our data suggest that it might be worthwhile to further explore the functions of SH2B1 and related genes of neurotrophin signaling pathway in ASD.
Project description:Autism spectrum disorder(ASD) is a complex neurodevelopmental disorder. Aberrant DNA methylation has been observed in ASD but the mechanisms remain largely unknown. Here, we employed discordant monozygotic twins to investigate the contribution of DNA methylation to ASD etiology. Genome-wide DNA methylation analysis was performed using samples obtained from five pairs of ASD-discordant monozygotic twins, which revealed a total of 2397 differentially methylated genes. Further, such gene list was annotated with Kyoto Encyclopedia of Genes and Genomes and demonstrated predominant activation of neurotrophin signaling pathway in ASD-discordant monozygotic twins. The methylation of SH2B1 gene was further confirmed in the ASD-discordant, ASD-concordant monozygotic twins, and a set of 30 pairs of sporadic case-control by bisulfite-pyrosequencing. The results showed that there was a greater DNA methylation difference in ASD-discordant monozygotic twins than ASD-concordant monozygotic twins. Further, verification of the Chr.16:28856743 of SH2B1 showed significant differences in DNA methylation between case and control. These results suggest abnormal methylation of SH2B1 is associated with ASD etiology. Our data suggest that it might be worthwhile to further explore the functions of SH2B1 and related genes of neurotrophin signaling pathway in ASD.
Project description:The exploration of copy number variation (CNV), notably of somatic cells, is an understudied aspect of genome biology. Any differences in the genetic make-up between twins derived from the same zygote represent an extreme example of somatic variation. We studied 19 pairs of monozygotic twins with either concordant or discordant phenotype using two platforms for genome-wide CNV analyses and show that CNVs exist within pairs in both groups. These findings impact our views of genotypic and phenotypic diversity in monozygotic twins, and suggest that CNV analysis in phenotypically discordant monozygotic twins may provide a powerful tool in identifying disease predisposition loci. Our results also imply that caution should be exercised with the interpretation of disease causality of de novo CNVs found in patients based on analysis of a single tissue in routine disease-related DNA diagnostics Keywords: copy number variation, concordant and discordant monozygotic twins