Project description:MicroRNA are small non-coding RNA molecules that regulate gene expression. To investigate the role of microRNA in ITP, we performed genome-wide expression analyses of mRNA and microRNA in T-cells from ITP patients and controls. We identified 1,915 regulated genes and 22 regulated microRNA that differed between ITP patients and controls. Seventeen of the 22 regulated microRNA were linked to changes in target gene expression; 57 of these target genes were associated with the immune system, e.g. T-cell activation and regulation of immunoglobulin production. CXCL13 and IL-21 were two microRNA target genes significantly increased in ITP. We could demonstrate increased plasma levels of CXCL13 and others have reported increased plasma levels of IL-21 in ITP. Thus, regulated microRNA were significantly associated with both gene and protein expression of molecules in immunological pathways. We suggest that microRNA may be important regulatory molecules involved in the loss of tolerance in ITP. Microarray expression analysis of mRNA and miRNA in peripheral blood T-cell of control and ITP patients.
Project description:MicroRNA are small non-coding RNA molecules that regulate gene expression. To investigate the role of microRNA in ITP, we performed genome-wide expression analyses of mRNA and microRNA in T-cells from ITP patients and controls. We identified 1,915 regulated genes and 22 regulated microRNA that differed between ITP patients and controls. Seventeen of the 22 regulated microRNA were linked to changes in target gene expression; 57 of these target genes were associated with the immune system, e.g. T-cell activation and regulation of immunoglobulin production. CXCL13 and IL-21 were two microRNA target genes significantly increased in ITP. We could demonstrate increased plasma levels of CXCL13 and others have reported increased plasma levels of IL-21 in ITP. Thus, regulated microRNA were significantly associated with both gene and protein expression of molecules in immunological pathways. We suggest that microRNA may be important regulatory molecules involved in the loss of tolerance in ITP. Microarray expression analysis of mRNA and miRNA in peripheral blood T-cell of control and ITP patients.
Project description:MicroRNA are small non-coding RNA molecules that regulate gene expression. To investigate the role of microRNA in ITP, we performed genome-wide expression analyses of mRNA and microRNA in T-cells from ITP patients and controls. We identified 1,915 regulated genes and 22 regulated microRNA that differed between ITP patients and controls. Seventeen of the 22 regulated microRNA were linked to changes in target gene expression; 57 of these target genes were associated with the immune system, e.g. T-cell activation and regulation of immunoglobulin production. CXCL13 and IL-21 were two microRNA target genes significantly increased in ITP. We could demonstrate increased plasma levels of CXCL13 and others have reported increased plasma levels of IL-21 in ITP. Thus, regulated microRNA were significantly associated with both gene and protein expression of molecules in immunological pathways. We suggest that microRNA may be important regulatory molecules involved in the loss of tolerance in ITP.
Project description:MicroRNA are small non-coding RNA molecules that regulate gene expression. To investigate the role of microRNA in ITP, we performed genome-wide expression analyses of mRNA and microRNA in T-cells from ITP patients and controls. We identified 1,915 regulated genes and 22 regulated microRNA that differed between ITP patients and controls. Seventeen of the 22 regulated microRNA were linked to changes in target gene expression; 57 of these target genes were associated with the immune system, e.g. T-cell activation and regulation of immunoglobulin production. CXCL13 and IL-21 were two microRNA target genes significantly increased in ITP. We could demonstrate increased plasma levels of CXCL13 and others have reported increased plasma levels of IL-21 in ITP. Thus, regulated microRNA were significantly associated with both gene and protein expression of molecules in immunological pathways. We suggest that microRNA may be important regulatory molecules involved in the loss of tolerance in ITP.
Project description:Immune thrombocytopenia (ITP) is a common platelet disorder in pediatric patients. Pediatric and adult ITP have been associated with sialic acid alterations, but the pathophysiology of ITP remains elusive, and ITP is often a diagnosis of exclusion. Our analysis of pediatric ITP plasma samples showed increased anti-Thomsen-Friedenreich antigen (TF-antigen) antibody representation, suggesting increased exposure of the typically sialylated and cryptic TF-antigen in these patients. The O-glycan sialyltransferase St3gal1 add sialic acid specifically on the TF-antigen. To understand if TF-antigen exposure associates with thrombocytopenia, we generated a mouse model with targeted deletion of St3gal1 in megakaryocytes (MK) (St3gal1MK-/-). TF-antigen exposure was restricted to MKs and resulted in thrombocytopenia. Deletion of Jak3 in St3gal1MK-/- mice normalized platelet counts implicating involvement of immune cells. Interferon-producing Siglec H-positive bone marrow (BM) immune cells engaged with O-glycan sialic acid moieties to regulate type I interferon (IFN-I) secretion and platelet release (thrombopoiesis), as evidenced by partially normalized platelet count following and inhibition of interferon and Siglec H receptors. Single cell RNAseq determined that TF-antigen exposure by MKs primed St3gal1MK-/- BM immune cells to release IFN-I. Single cell RNAseq further revealed a new population of immune cells with a plasmacytoid dendritic cell (pDC)-like signature and concomitant upregulation of immunoglobulin re-arrangement gene transcripts Igkc and Ighm, suggesting additional immune regulatory mechanisms. Thus, aberrant TF-antigen moieties, often found in pathological conditions, regulate immune cells and thrombopoiesis in the BM, leading to reduced platelet count.
Project description:We investigated the expression profiles of plasma miRNAs in immune thrombocytopenia (ITP) patients. Peripheral blood plasma was used for Agilent miRNA expression microarray analysis to define miRNA profiles and to identify miRNAs with discriminatory levels for ITP and healthy controls. Results were further validated using quantitative realtime PCR on a larger cohort, enabling relative quantification of plasma miRNAs and defining miRNAs with diagnostic value for the disease.
Project description:Rituximab (RTX) is widely used as a first-line therapeutic strategy for patients affected by immune thrombocytopenia (ITP). However, a large proportion of patients relapse after successful treatment. The present NGS assay was done to help find the cause for this relapse on the immune repertoire level. Therefore, we performed antibody repertoire sequencing for three RTX relapse patients with subsequent mutation and clonal analysis, as well as for two patients with ongoing ITP and two healthy donors (HD) with subsequent mutation analysis.