Project description:To gain insight into the basic mechanism of Hydrogen peroxide detoxification in the methylotrophic yeast, H. polymorpha, we analyzed changes in transcriptional profiles in response to hydrogen peroxide exposure.
Project description:To gain insight into the basic mechanism of Hydrogen peroxide detoxification in the methylotrophic yeast, H. polymorpha, we analyzed changes in transcriptional profiles in response to hydrogen peroxide exposure. Total RNA samples were collected from H. polymorpha cells after 30 min incubation with 0.5mM hydrogen peroxide. Using the RNA sample obtained prior to hydrogen peroxide addition as a reference, the differential fluorescence intensities of each RNA sample prepared at the indicated time was measured after labeling with Cy3 or Cy5 fluorochromes. For all analyses, we performed dye swapping experiments to avoid dye bias.
Project description:Acinetobacter baumannii is a Gram-negative opportunistic pathogen that causes multiple infections, including pneumonia, bacteremia, and wound infections. Due to multiple intrinsic and acquired drug-resistance mechanisms, A. baumannii isolates are commonly multi-drug resistant and infections are notoriously difficult to treat. Therefore, it is important to identify mechanisms used by A. baumannii to survive stresses encountered during infection as a means of identifying new drug targets. In this study, we determined the transcriptional response of A. baumannii to hydrogen peroxide stress using RNASequencing. Upon exposure to hydrogen peroxide, A. baumannii differentially transcribes several hundred genes. In this study, we also determined the transcriptional profile of A. baumannii strains with the transcriptional regulators mumR or oxyR genetically inactivated and identified transcriptional differences between these strains and wild-type A. baumannii in response to hydrogen peroxide stress. In doing this, the function of A. baumannii OxyR in hydrogen peroxide stress resistance and regulation of genes required for hydrogen peroxide detoxification was defined. Moreover, the contribution of the uncharacterized regulator MumR to hydrogen peroxide stress resistance was also explored. This work reveals the transcriptome of an important human pathogen in the presence of hydrogen peroxide stress.
Project description:Transcriptional profiling of Escherichia coli K-12 comparing luxS mutant LW12 with wild type W3110 exposure to 10mM or 30mM hydrogen peroxide. Two-condition experiment, luxS mutant LW12 vs. wild type W3110, treatment with 10mM hydrogen peroxide for 30min or treatment with 30mM hydrogen peroxide for 30min. Two biological replicates.
Project description:Transcriptional profiling of Escherichia coli K-12 comparing luxS mutant LW12 with wild type W3110 exposure to 10mM or 30mM hydrogen peroxide.