Project description:Fungal volatile organic compounds (VOCs) represent promising candidates for biopesticide fumigants to control crop pests and pathogens. Herein, VOCs produced using three strains of the entomopathogenic fungus Metarhizium brunneum were identified via GC-MS and screened for antimicrobial activity. The VOC profiles varied with fungal strain, development state (mycelium, spores) and culture conditions. Selected VOCs were screened against a range of rhizosphere and non-rhizosphere microbes, including three Gram-negative bacteria (Escherichia coli, Pantoea agglomerans, Pseudomonas aeruginosa), five Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, B. megaterium, B. thuringiensis), two yeasts (Candida albicans, Candida glabrata) and three plant pathogenic fungi (Pythium ultimum, Botrytis cinerea, Fusarium graminearum). Microbes differed in their sensitivity to the test compounds, with 1-octen-3-ol and isovaleric acid showing broad-spectrum antimicrobial activity. Yeasts and bacteria were inhibited by the same VOCs. Cryo-SEM showed that both yeasts and bacteria underwent some form of "autolysis", where all components of the cell, including the cell wall, disintegrated with little evidence of their presence in the clear, inhibition zone. The oomycete (P. ultimum) and ascomycete fungi (F. graminearum, B. cinerea) were sensitive to a wider range of VOCs than the bacteria, suggesting that eukaryotic microbes are the main competitors to M. brunneum in the rhizosphere. The ability to alter the VOC profile in response to nutritional cues may assist M. brunneum to survive among the roots of a wide range of plant species. Our VOC studies provided new insights as to how M. brunneum may protect plants from pathogenic microbes and correspondingly promote healthy growth.
Project description:Although most known mycoviruses are asymptomatic or reduce the virulence of their host fungi, those that confer hypervirulence to entomopathogenic fungus still need to be explored. Here, we discovered and studied a novel mycovirus in Metarhizium flavoviride, isolated from Laodelphax striatellus. Based on molecular analysis, we tentatively designated the mycovirus as Metarhizium flavoviride partitivirus 1 (MfPV1), a novel species in genus Gammapartitivirus, family Partitiviridae. MfPV1 has two double-stranded (ds) RNAs as its genome, 1,775 and 1,575 bp in size respectively, encapsidated in isometric particles. When we transfected commercial strains of M. anisopliae and M. pingshaense with MfPV1, conidiation was significantly enhanced (t-test; P-value < 0. 01), and the significantly higher mortality rates of the larvae of Plutella xylostella and Spodoptera frugiperda, two important lepidopteran pests were found in virus-transfected strains (ANOVA; P-value < 0.05). Transcriptomic analysis showed that transcript levels of pathogenesis-related genes in MfPV1-infected M. anisopliae were obviously altered, suggesting increased production of metarhizium adhesin-like protein, hydrolyzed protein and destruxin synthetase. Further studies are required to elucidate the mechanism whereby MfPV1 enhances the expression of pathogenesis-related genes and virulence of Metarhizium to lepidopteran pests. This study presents experimental evidence that the transfection of other entomopathogenic fungal species with a mycovirus can confer significant hypervirulence and provides a good example that mycoviruses could be used as synergistic agent to enhance the biocontrol activity of entomopathogenic fungi.
Project description:Ergot alkaloids are important specialized fungal metabolites that are used to make potent pharmaceuticals for neurological diseases and disorders. Lysergic acid (LA) and dihydrolysergic acid (DHLA) are desirable lead compounds for pharmaceutical semisynthesis but are typically transient intermediates in the ergot alkaloid and dihydroergot alkaloid pathways. Previous work with Neosartorya fumigata demonstrated strategies to produce these compounds as pathway end products, but their percent yield (percentage of molecules in product state as opposed to precursor state) was low. Moreover, ergot alkaloids in N. fumigata are typically retained in the fungus as opposed to being secreted. We used clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and heterologous expression approaches to engineer these compounds in Metarhizium brunneum, representing an alternate expression host from a different lineage of fungi. The relative percent yields of LA (86.9%) and DHLA (72.8%) were much higher than those calculated here for previously engineered strains of N. fumigata (2.6% and 2.0%, respectively). Secretion of these alkaloids also was measured, with averages of 98.4% of LA and 87.5% of DHLA being secreted into the growth medium; both values were significantly higher than those measured for the N. fumigata derivatives (both of which were less than 5.6% secreted). We used a similar approach to engineer a novel dihydroergot alkaloid in M. brunneum and, through high-performance liquid chromatography-mass spectrometry (LC-MS) analyses, provisionally identified it as the dihydrogenated form of lysergic acid α-hydroxyethylamide (dihydro-LAH). The engineering of these strains provides a strategy for producing novel and pharmaceutically important chemicals in a fungus more suitable for their production.IMPORTANCE Ergot alkaloids derived from LA or DHLA are the bases for numerous pharmaceuticals with applications in the treatment of dementia, migraines, hyperprolactinemia, and other conditions. However, extraction of ergot alkaloids from natural sources is inefficient, and their chemical synthesis is expensive. The ability to control and redirect ergot alkaloid synthesis in fungi may allow more efficient production of these important chemicals and facilitate research on novel derivatives. Our results show that Metarhizium brunneum can be engineered to efficiently produce and secrete LA and DHLA and, also, to produce a novel derivative of DHLA not previously found in nature. The engineering of dihydroergot alkaloids, including a novel species, is important because very few natural sources of these compounds are known. Our approach establishes a platform with which to use M. brunneum to study the production of other ergot alkaloids, specifically those classified as lysergic acid amides and dihydroergot alkaloids.
Project description:ObjectiveThe fungus Metarhizium brunneum produces ergot alkaloids of the lysergic acid amide class, most abundantly lysergic acid α-hydroxyethylamide (LAH). Genes for making ergot alkaloids are clustered in the genomes of producers. Gene clusters of LAH-producing fungi contain an α/β hydrolase fold protein-encoding gene named easP whose presence correlates with LAH production but whose contribution to LAH synthesis in unknown. We tested whether EasP contributes to LAH accumulation through gene knockout studies.ResultsWe knocked out easP in M. brunneum via a CRISPR/Cas9-based approach, and accumulation of LAH was reduced to less than half the amount observed in the wild type. Because LAH accumulation was reduced and not eliminated, we identified and mutated the only close homolog of easP in the M. brunneum genome, a gene we named estA. An easP/estA double mutant did not differ from the easP mutant in lysergic acid amide accumulation, indicating estA had no role in the pathway. We conclude EasP contributes to LAH accumulation but is not absolutely required. Either a gene encoding redundant function and lacking sequence identity with easP resides outside the ergot alkaloid synthesis gene cluster, or EasP plays an accessory role in the synthesis of LAH.