Project description:Pulmonary carcinoid tumors account for up to 5% of all lung malignancies in adults, comprise 30% of all carcinoid malignancies, and are defined histologically as typical carcinoid (TC) and atypical carcinoid (AC) tumors. The role of specific genomic alterations in the pathogenesis of pulmonary carcinoid tumors remains poorly understood. We sought to identify genomic alterations and pathways that are deregulated in these tumors to find novel therapeutic targets for pulmonary carcinoid tumors.We performed integrated genomic analysis of carcinoid tumors comprising whole genome and exome sequencing, mRNA expression profiling and SNP genotyping of specimens from normal lung, typical and atypical carcinoid, and small cell lung carcinoma (SCLC) to fully represent the lung neuroendocrine tumor spectrum. Pathway analysis of of CNV and gene expression data suggested deregulation of the NF-ĸB and MAPK/ERK pathways. This study identified mutated genes affecting cancer relevant pathways and biological processes that could provide opportunities for developing targeted therapies for pulmonary carcinoid tumors.
Project description:The aim of this study was to perform a microarray analysis of the response pattern of EEC from both large and small bowel to infection in vitro, using Chlamydia trachomatis infection as a model. Two human EEC lines: LCC-18, derived from a neuroendocrine colonic tumour, and CNDT-2, derived from a small intestinal carcinoid, were infected with C. trachomatis serovar LGV II strain 434 (ATCC VR-902B). Penicillin G was used to induce persistent infection. Gene expression levels in infected and persistently infected EEC cells were investigated by microarray analysis
Project description:Tumor tissue of lung carcinoid tumors (pulmonary neuroendocrine tumors) and adjacent normal lung tissue was profiled using scRNA-seq
Project description:We aimed to identify clinically meaningful biomarkers in pulmonary carcinoid tumors (PCTs), a member of neuroendocrine neoplasms, via profiling miRNAs and mRNAs.