Project description:The increase in human population and urbanization are resulting in an increase in the volume of wastewater and urban runoff effluents entering natural ecosystems. These effluents may contain multiple pollutants to which the biological response of aquatic organisms is still poorly understood mainly due to mixture toxicity and interactions with other environmental factors. In this context, RNA sequencing was used to assess the impact of a chronic exposure to wastewater treatment plant and stormwater effluents at the whole-transcriptome level and evaluate the potential physiological outcomes in the Asian clam Corbicula fluminea. We de-novo assembled a transcriptome from C. fluminea digestive gland and identified a set of 3,181 transcripts with altered abundance in response to water quality. The largest differences in transcriptomic profiles were observed between C. fluminea from the reference site and those exposed to wastewater treatment plant effluents. On both anthropogenically impacted sites, most differentially expressed transcripts were involved in signaling pathways in relation to energy metabolism such as mTOR and FoxO, suggesting an energy/nutrient deficit and hypoxic conditions. These conditions were likely responsible for damages to proteins and transcripts in response to wastewater treatment effluents whereas exposure to urban runoff might result in immune and endocrine disruptions. In absence of comprehensive chemical characterization, the RNAseq approach could provide information regarding the mode of action of pollutants and then be useful for the identification of which parameters must be studied at higher integration level in order to diagnose sites where the presence of complex and variable mixtures of chemicals is suspected.
Project description:Freshwater environments such as rivers receive effluent discharges from wastewater treatment plants, representing a potential hotspot for antibiotic resistance genes (ARGs). These effluents also contain low levels of different antimicrobials including biocides and antibiotics such as sulfonamides that can be frequently detected in rivers. The impact of such exposure on ARG prevalence and microbial diversity of riverine environment is unknown, so the aim of this study was to investigate the release of a sub-lethal concentration (<4 g L-1) of the sulfonamide compound sulfamethoxazole (SMX) on the river bacterial microbiome using a microflume system. This system was a semi-natural in-vitro microflume using river water (30 L) and sediment, with circulation to mimic river flow. A combination of ‘omics’ approaches were conducted to study the impact of SMX exposure on the microbiomes within the microflumes. Metaproteomics did not show differences in ARGs expression with SMX exposure in water.
Project description:Many biomonitoring tools/approaches have been proposed to assess presence of endocrine active chemicals (EACs) and their biological effects in the field. Although these tools have provided valuable information, they are often limited by their specificity for certain groups of EACs and they may not account for interactions between EACs. This study aims to evaluate utility of transcriptomic and metabolomic technologies for effects monitoring in the field, and to advance integration of omic and environmental chemistry data sets. The objective was to utilize transcriptomic biomonitoring to determine the relative contribution of wastewater treatment plant effluents to biological effects observed in fish exposed to ambient waters receiving the effluents. Adult male fathead minnow were exposed to treated wastewater effluent or stream water up or downstream the plant in three different watersheds for 4 days. After exposure, the liver of 5-7 fish per treatment per site (i.e 19-21 fish from each watershed) were analyzed by microarrays. The transcriptomic profiles were compared to control fish exposed to Lake Superior filtered water.
Project description:Soil Aquifer Treatment (SAT) is recognized as a cost-effective approach to reduce contaminants of emerging concern (CECs) from Wastewater Treatment Plant (WWTP) effluents. However, its efficiency in removing the associated biological effects is still poorly understood. Here, we evaluated the efficiency of three pilot SAT systems, two of them enhanced with reactive barriers containing different proportions of sand and organic materials, in removing toxicity associated to CECs. SATs were fed with secondary effluents from the Palamós WWTP (N.E. Spain) during two consecutive campaigns scheduled before and after the summer of 2020. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. Transcriptomic analyses of zebrafish embryos exposed to the corresponding water extracts revealed a wide range of toxic activities in the WWTP effluents. Results demonstrated that the associated responses were reduced by more than 70% by SAT, achieving control levels in some cases. Similar results were obtained when human HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared to be partially determined by the reactive barrier composition and/or SAT managing and was correlated with the removal of CECs by SAT. In conclusion, SAT appears to be a very promising approach for efficiently reducing the effects of recalcitrant pollutants from WWTP secondary effluents on the environment and human health.
Project description:Many biomonitoring tools/approaches have been proposed to assess presence of endocrine active chemicals (EACs) and their biological effects in the field. Although these tools have provided valuable information, they are often limited by their specificity for certain groups of EACs and they may not account for interactions between EACs. This study aims to evaluate utility of transcriptomic and metabolomic technologies for effects monitoring in the field, and to advance integration of omic and environmental chemistry data sets. The objective was to utilize transcriptomic biomonitoring to determine the relative contribution of wastewater treatment plant effluents to biological effects observed in fish exposed to ambient waters receiving the effluents.
Project description:The transcriptome analysis by the human DNA microarray was applied to evaluate the impacts of whole wastewater effluents from the membrane bioreactors (MBRs) and the activated sludge process (AS), on the biological processes of human hepatoma HepG2 cells. The three conventional bioassays (i.e., cytotoxicity tests and bioluminescence inhibition test) and chemical analysis of the domestic effluent standards were conducted in parallel since they are well-established methods with previous applications to wastewater. A significant variation of effluent quality was sdemonstrated among the tested effluents despite that all effluents met the 40 national effluent standards. The three conventional bioassays supported the result of the transcriptome analysis, indicating the comparable or even higher sensitivity of the new assay. The most superior effluent quality was found in the MBR operated at a relatively long sludge retention time (i.e., 40 days) and small membrane pore size (i.e., 0.03 M-NM-<m). In addition, functional analysis of the differentially expressed genes revealed that the effluents made various impacts on the cellular functions, suggesting the transcriptome analysis by DNA microarray as more comprehensive, rapid and sensitive tool to detect multiple impacts of the whole effluents. Moreover, the potential genetic markers were proposed to quantitatively evaluate the treatability of the wastewater effluents. In this study, we examined the gene expression alteration in human hepatoma cell line, HepG2 exposed to the raw wastewater, effluents from three types of membrane bioreactors (MBRs), and the activated sludge process. Wastewater DNA microarray with 8795 human genes. MQ water was used as control. For duplicate, two dishes were prepared for each sample and individually treated in parallel.
Project description:Three surface waters in Gainesville, Florida were used in a 48 hour whole effluents exposure to assess gene expression profiles of male fathead minnow liver. Microarray analysis was used to determine changes in gene expression of exposed fish to waters from a site downstream of a wastewater treatment plant (streamwater), a wastewater treatment plant (wastewater), and a lake (stormwater). Differences in gene expression between fish exposed to collected waters and controls were observed. Number of altered genes and biological processes were 1028 and 18 for stormwater; 787 and 19 for streamwater; and: 575 and 12 for wastewater. In general, the effects observed in all exposed fish were related with fatty acid metabolism, DNA repair, oxidation-reduction process, cell wall catabolic process and apoptosis. All exposed fish showed altered expression of genes related with DNA damage repair. In particular fish exposed to stormwater and streamwater showed downregulation of several key intermediates transcripts of cholesterol. The presence and environmental persistence of perfluorinated chemicals (PFCs) in these waters, the resemblance in known effects on transcripts with those found in this study, suggest that the set of genes differentially regulated in fathead minnows after 48 hours of exposure may be attributed to exposure to PFCs.
Project description:The transcriptome analysis by the human DNA microarray was applied to evaluate the impacts of whole wastewater effluents from the membrane bioreactors (MBRs) and the activated sludge process (AS), on the biological processes of human hepatoma HepG2 cells. The three conventional bioassays (i.e., cytotoxicity tests and bioluminescence inhibition test) and chemical analysis of the domestic effluent standards were conducted in parallel since they are well-established methods with previous applications to wastewater. A significant variation of effluent quality was sdemonstrated among the tested effluents despite that all effluents met the 40 national effluent standards. The three conventional bioassays supported the result of the transcriptome analysis, indicating the comparable or even higher sensitivity of the new assay. The most superior effluent quality was found in the MBR operated at a relatively long sludge retention time (i.e., 40 days) and small membrane pore size (i.e., 0.03 μm). In addition, functional analysis of the differentially expressed genes revealed that the effluents made various impacts on the cellular functions, suggesting the transcriptome analysis by DNA microarray as more comprehensive, rapid and sensitive tool to detect multiple impacts of the whole effluents. Moreover, the potential genetic markers were proposed to quantitatively evaluate the treatability of the wastewater effluents.