Project description:Undernutrition increases susceptibility to diarrheal diseases. The adipocytokine leptin imparts protection from amebiasis. We tested the role of leptin signaling in cellular resistance to E. histolytica cytotoxicity in HEK cells transfected to express the leptin receptor. Protection from amebic killing was conferred by the leptin receptor. It required activation of the transcriptional regulator STAT3 by the leptin receptor, as mutation of the STAT3 activation domain of the receptor, or addition of a STAT3 small-molecule inhibitor, reversed protection. In contrast, a leptin receptor containing a common polymorphism (Q223R) known to increase susceptibility to amebiasis in humans provided significantly less protection. Consistent with the importance of STAT3, the Q223R polymorphism decreased l leptin-dependent STAT3 activation by 21% relative to the WT receptor (P=0.035). Microarray analysis identified potential downstream effectors of STAT3-mediated protection, most importantly TRIB1 and SOCS3, which appear to having opposing roles in the regulation of E. histolytica induced apoptosis. Together these data demonstrated that leptin increased the resistance of host cells to E. histolytica cytotoxicity via a STAT3-dependent mechanism. Additionally we found that the Q223R polymorphism in the leptin receptor, known to increase susceptibility to E. histolytica infection, decreased STAT3 activation and decreased host resistance to amebic cytotoxicity. This is the first demonstration of a host-signaling pathway that restricts amebic pathogenesis. Additionally, this finding represents an important advance in our mechanistic understanding of the role of leptin in the relationship between undernutrition and increased susceptibility to infection.
Project description:Resistance to amebiasis is associated with a polymorphism in the leptin receptor. Previous studies demonstrated that humans with the ancestral Q223 leptin receptor allele were nearly four times less likely to be infected with Entamoeba histolytica than those carrying the mutant R223 allele. We hypothesized that the Q223 allele protected against E. histolytica via STAT3-mediated transcription of genes required for mucosal immunity. To test this, mice containing the humanized LEPR Q or R allele at codon 223 were intracecally infected with E. histolytica. Susceptibility to amebiasis was assessed, and cecal tissues analyzed for changes in gene expression. By 72 h post-challenge all Q223 mice had cleared E. histolytica, whereas 39% of 223R mice were infected. 37 genes were differentially expressed in response to infection at 72 h, including pro-inflammatory genes (CXCL2, calprotectin (S100A8/9), Pla2g7, Itbg2, and MMP9) and functions pertaining to the movement and activity of immune cells. A comparison at 12 h post-challenge of infected Q223 vs. R223 mice identified a subset of differentially-expressed genes, many of which were closely linked to leptin signaling. Further analyses indicated that the Q223 gene expression pattern was consistent with a suppressed apoptotic response to infection, while 223R showed increased cellular proliferation and recruitment. These studies are the first to illuminate the downstream effects of leptin receptor polymorphisms on intestinal infection by E. histolytica. As such, they are important for the insight that they provide to this previously uncharacterized mechanism of mucosal immunity. Resistance to amebiasis is associated with a polymorphism in the leptin receptor. Previous studies demonstrated that humans with the ancestral Q223 leptin receptor allele were nearly four times less likely to be infected with Entamoeba histolytica than those carrying the mutant R223 allele. We hypothesized that the Q223 allele protected against E. histolytica via STAT3-mediated transcription of genes required for mucosal immunity. To test this, mice containing the humanized LEPR Q or R allele at codon 223 were intracecally infected with E. histolytica. Susceptibility to amebiasis was assessed, and cecal tissues analyzed for changes in gene expression. By 72 h post-challenge all Q223 mice had cleared E. histolytica, whereas 39% of 223R mice were infected. 37 genes were differentially expressed in response to infection at 72 h, including pro-inflammatory genes (CXCL2, calprotectin (S100A8/9), Pla2g7, Itbg2, and MMP9) and functions pertaining to the movement and activity of immune cells. A comparison at 12 h post-challenge of infected Q223 vs. R223 mice identified a subset of differentially-expressed genes, many of which were closely linked to leptin signaling. Further analyses indicated that the Q223 gene expression pattern was consistent with a suppressed apoptotic response to infection, while 223R showed increased cellular proliferation and recruitment. These studies are the first to illuminate the downstream effects of leptin receptor polymorphisms on intestinal infection by E. histolytica. As such, they are important for the insight that they provide to this previously uncharacterized mechanism of mucosal immunity. Control (non-infected QQ or RR) vs. infected with E. histolytica at two time points (12hour and 72 hour)
Project description:Resistance to amebiasis is associated with a polymorphism in the leptin receptor. Previous studies demonstrated that humans with the ancestral Q223 leptin receptor allele were nearly four times less likely to be infected with Entamoeba histolytica than those carrying the mutant R223 allele. We hypothesized that the Q223 allele protected against E. histolytica via STAT3-mediated transcription of genes required for mucosal immunity. To test this, mice containing the humanized LEPR Q or R allele at codon 223 were intracecally infected with E. histolytica. Susceptibility to amebiasis was assessed, and cecal tissues analyzed for changes in gene expression. By 72 h post-challenge all Q223 mice had cleared E. histolytica, whereas 39% of 223R mice were infected. 37 genes were differentially expressed in response to infection at 72 h, including pro-inflammatory genes (CXCL2, calprotectin (S100A8/9), Pla2g7, Itbg2, and MMP9) and functions pertaining to the movement and activity of immune cells. A comparison at 12 h post-challenge of infected Q223 vs. R223 mice identified a subset of differentially-expressed genes, many of which were closely linked to leptin signaling. Further analyses indicated that the Q223 gene expression pattern was consistent with a suppressed apoptotic response to infection, while 223R showed increased cellular proliferation and recruitment. These studies are the first to illuminate the downstream effects of leptin receptor polymorphisms on intestinal infection by E. histolytica. As such, they are important for the insight that they provide to this previously uncharacterized mechanism of mucosal immunity. Resistance to amebiasis is associated with a polymorphism in the leptin receptor. Previous studies demonstrated that humans with the ancestral Q223 leptin receptor allele were nearly four times less likely to be infected with Entamoeba histolytica than those carrying the mutant R223 allele. We hypothesized that the Q223 allele protected against E. histolytica via STAT3-mediated transcription of genes required for mucosal immunity. To test this, mice containing the humanized LEPR Q or R allele at codon 223 were intracecally infected with E. histolytica. Susceptibility to amebiasis was assessed, and cecal tissues analyzed for changes in gene expression. By 72 h post-challenge all Q223 mice had cleared E. histolytica, whereas 39% of 223R mice were infected. 37 genes were differentially expressed in response to infection at 72 h, including pro-inflammatory genes (CXCL2, calprotectin (S100A8/9), Pla2g7, Itbg2, and MMP9) and functions pertaining to the movement and activity of immune cells. A comparison at 12 h post-challenge of infected Q223 vs. R223 mice identified a subset of differentially-expressed genes, many of which were closely linked to leptin signaling. Further analyses indicated that the Q223 gene expression pattern was consistent with a suppressed apoptotic response to infection, while 223R showed increased cellular proliferation and recruitment. These studies are the first to illuminate the downstream effects of leptin receptor polymorphisms on intestinal infection by E. histolytica. As such, they are important for the insight that they provide to this previously uncharacterized mechanism of mucosal immunity.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Project description:BackgroundLong terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes.ResultsUsing a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time.ConclusionsAll families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
Project description:House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (≤50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers.
Project description:The ability of Entamoeba histolytica to phagocytose host cells correlates to observed virulence in vivo. To better understand the mechanism of phagocytosis we used paramagnetic beads coated with host ligand and sorted trophozoites based on phagocytic ability. Gene expression was then measured in both the sorted phagocytic and non-phagocytic populations using a custom Affymetrix chip for E. histolytica. Feed forward regulation of phagocytosis by Entamoeba histolytica. Infection and Immunity. PMID 23045476
Project description:The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R receptor genes. In rodents, there are ~150 V1R genes comprising 12 subfamilies organized in gene clusters at multiple chromosomal locations. Previously, we showed that several of these subfamilies had been extensively modulated by gene duplications, deletions, and gene conversions around the time of the evolutionary split of the mouse and rat lineages, consistent with the hypothesis that V1R repertoires might be involved in reinforcing speciation events. Here, we generated genome sequence for one large cluster containing two V1R subfamilies in Mus spretus, a closely related and sympatric species to Mus musculus, and investigated evolutionary change in these repertoires along the two mouse lineages.We describe a comparison of spretus and musculus with respect to genome organization and synteny, as well as V1R gene content and phylogeny, with reference to previous observations made between mouse and rat. Unlike the mouse-rat comparisons, synteny seems to be largely conserved between the two mouse species. Disruption of local synteny is generally associated with differences in repeat content, although these differences appear to arise more from deletion than new integrations. Even though unambiguous V1R orthology is evident, we observe dynamic modulation of the functional repertoires, with two of seven V1Rb and one of eleven V1Ra genes lost in spretus, two V1Ra genes becoming pseudogenes in musculus, two additional orthologous pairs apparently subject to strong adaptive selection, and another divergent orthologous pair that apparently was subjected to gene conversion.Therefore, eight of the 18 (~44%) presumptive V1Ra/V1Rb genes in the musculus-spretus ancestor appear to have undergone functional modulation since these two species diverged. As compared to the rat-mouse split, where modulation is evident by independent expansions of these two V1R subfamilies, divergence between musculus and spretus has arisen more by mutations within coding sequences. These results support the hypothesis that adaptive changes in functional V1R repertoires contribute to the delineation of very closely related species.