Project description:To determine the signaling networks that are dysregulated in cisplatin-resistant non-small cell lung cancer, noncoding RNA expression data were obtained from, and compared between, the lung adenocarcinoma cell line, A549, and its cisplatin-resistant derivative, A549/CDDP. Noncoding RNA expression data from a cisplatin-sensitive lung adenocarcinoma cancer cell line (A549) were collected and compared to noncoding RNA expression data from a cisplatin-resistant cell line (A549/CDDP). 3 independent experiments were completed for both the sensitive and resistant cell lines.
Project description:To determine the signaling networks that are dysregulated in cisplatin-resistant non-small cell lung cancer, noncoding RNA expression data were obtained from, and compared between, the lung adenocarcinoma cell line, A549, and its cisplatin-resistant derivative, A549/CDDP. Noncoding RNA expression data from a cisplatin-sensitive lung adenocarcinoma cancer cell line (A549) were collected and compared to noncoding RNA expression data from a cisplatin-resistant cell line (A549/CDDP). 3 independent experiments were completed for both the sensitive and resistant cell lines.
Project description:To determine the signaling networks that are dysregulated in cisplatin-resistant non-small cell lung cancer, noncoding RNA expression data were obtained from, and compared between, the lung adenocarcinoma cell line, A549, and its cisplatin-resistant derivative, A549/CDDP.
Project description:To determine the signaling networks that are dysregulated in cisplatin-resistant non-small cell lung cancer, noncoding RNA expression data were obtained from, and compared between, the lung adenocarcinoma cell line, A549, and its cisplatin-resistant derivative, A549/CDDP.
Project description:The cellular transcriptome of untreated and cisplatin-treated A549 non-small cell lung cancer cells and their cisplatin-resistant sub-line A549rCDDP2000 was screened with a whole genome array for gene candidates relevant for cisplatin resistance.
Project description:Cisplatin resistance is a major therapeutic challenge in advanced head and neck squamous cell carcinoma (HNSCC). Here, we aimed to investigate the key signaling pathway for cisplatin resistance in HNSCC cells. HNSCC cell lines that were sensitive (HN4 and HN30) or resistant (HN4/DDP and HN30/DDP) to cisplatin were used for this study. Moreover, the cisplatin-resistant human melanoma cell lines (A375/DDP) and human lung cancer cell lines (A549/DDP) have also been established. To identify the role of proteins in the acquisition of cisplatin resistance, we analyzed the abnormally expressed protein via protein mass spectrometry methods (isobaric tags for relative and absolute quantitation, iTRAQ) in cisplatin-sensitive and cisplatin-resistant cancer cells, and found that VN1R5 was highly expressed in cisplatin-resistant cells. Long noncoding RNA lnc-POP1-1 upregulated by VN1R5. To deeply investigate the mechanism by which lnc-POP1-1 affects cisplatin resistance in HNSCC cells, we used RNA pull-down assays followed by mass spectrometry to explore the putative RNA-binding proteins (RBPs) interacting with lnc-POP1-1.
Project description:Silver nanoparticles (AgNPs) have shown great potential as therapeutic agents due to their ability to cause apoptotic cell death in cancer cells. However, little knowledge is available regarding the underlying action mechanisms of AgNPs towards multi-drug resistant cancer cells. Herein, we employed quantitative proteomics to investigate the cytotoxic mechanisms of AgNPs on both cisplatin-sensitive (A549 cells) and -resistant (A549/DDP cells) human lung adenocarcinoma and to explore their potential anticancer abilities. We first performed cytotoxicity tests and found that AgNPs exert similar cytotoxic effects on A549 and A549/DDP cells. At the proteome level, A549 and A549/DDP cells responded to AgNPs distinctively and similarly by causing cell apoptosis via upregulating RNA metabolism, suppressing VEGF siganling pathway, repressing p53-mediated pathways, promoting cell cycle arrest, etc. Additionally, AgNPs remarkably induced ROS generation in A549 and A549/DDP cells. The mitotoxicity results further confirmed the effectiveness of AgNPs in hampering mitochondrial function and respiration in A549 and A549/DDP cells. Overall, our investigations showed that AgNPs could effectively induce cell deaths in human lung adenocarcinoma cells regardless of their sensitivities to cisplatin, suggesting that AgNPs could be potentially used in biomedical aspects as an anticancer agent in alleviating the problem of acquired drug resistance in chemotherapy.