Project description:Two-organism transcriptome profiling of infected maize anthers demonstrated that there are anther-specific gene expression programs for both the pathogen and the host. Two-dye, competitive microarray hybridizations were performed on Agilent oligo arrays. Confocal microscopy on other anthers demonstrated that U. maydis was in contact with all anther lobe cell types by 3 days post-infection and that the pathogen disrupted both host cell division and cell expansion patterns.
Project description:The fungal pathogen Ustilago maydis establishes a biotrophic relationship with its host plant maize. Hallmarks of the disease are large plant tumors in which fungal proliferation occurs. Plants have developed various defense pathways to cope with pathogens. We used microarrays to detail the global programme of gene expression during the infection process of Ustilago maydis in its host plant to get insights into the defense programs and the metabolic reprogramming needed to supply the fungus with nutrients. Keywords: time course
Project description:In this study, RNA-seq based comparative transcriptome analysis was used to study the response between Fusarium graminearum and Ustilago maydis to different growth conditions. RNA-seq libraries were generated from fungal filaments growing in culture (complete medium) and from infected maize silk. This data set contains the data for the Fusarium graminearum and Ustilago maydis medium growth condition.
Project description:Two-organism transcriptome profiling of infected seedling, adult leaf, and tassel demonstrated that both the host and pathogen exhibit organ-specific expression programs. Phenotypic screening of U. maydis mutants deleted for suites of secreted protein genes and maize growth mutants demonstrated organ-restricted tumorigenesis. Two-dye, competitive hybridizations were performed on Agilent oligo arrays. Keywords: maize, pathogen, fungus, Ustilago, organ-specificity
Project description:Anthocyanin induction in plant is considered a general defense response against biotic and abiotic stresses. The infection by Ustilago maydis, the corn smut pathogen, is accompanied with anthocyanin induction in leaf tissue. We revealed that anthocyanin is intentionally induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with cytoplasmic maize protein kinase ZmTTK1. Tin2 masks an ubiquitin-proteasome degradation motif in ZmTTK1 leading to a more stable active kinase. Active ZmTTK1 controls transcriptional activation of genes in the anthocyanin biosynthesis pathway rerouting phenylalanine away from lignin biosynthesis. Therefore, we performed microarray analysis to understand how maize gene transcription in phenylpropanoid pathway is differentially changed after infection with Ustilago maydis SG200 (wild type) and SG200Dtin2 (anthocyanin-inducing effector mutant). We prepared three biological replicates for mock-inoculated maize (control), SG200-infected maize and SG200M-NM-^Ttin2-infected maize. For 1 sample, we harvested the leaves (1-3cm below injection hole) from 20 plants and pooled them. At 4 days post inoculation, total RNA was extracted.
Project description:Anthocyanin induction in plant is considered a general defense response against biotic and abiotic stresses. The infection by Ustilago maydis, the corn smut pathogen, is accompanied with anthocyanin induction in leaf tissue. We revealed that anthocyanin is intentionally induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with cytoplasmic maize protein kinase ZmTTK1. Tin2 masks an ubiquitin-proteasome degradation motif in ZmTTK1 leading to a more stable active kinase. Active ZmTTK1 controls transcriptional activation of genes in the anthocyanin biosynthesis pathway rerouting phenylalanine away from lignin biosynthesis. Therefore, we performed microarray analysis to understand how maize gene transcription in phenylpropanoid pathway is differentially changed after infection with Ustilago maydis SG200 (wild type) and SG200Dtin2 (anthocyanin-inducing effector mutant).
Project description:Ustilago maydis is a plant-pathogenic fungus that establishes a biotrophic relationship with its host Zea mays. The biotrophic interaction is initiated upon host penetration, and involves expansion of the host plasma membrane around hyphae, which is thought to facilitate the exchange of nutrients and virulence factors. Transcriptional regulators involved in the establishment of an infectious dikaryon and penetration into the host have been identified, however, regulators involved in the post-penetration stages remained to be elucidated. In the study we report the identification of an Ustilago maydis forkhead transcription factor, Fox1, which is exclusively expressed during biotrophic development. Deletion of fox1 results in reduced virulence and impaired tumour development in planta. Δfox1 hyphae induce plant defences including the overproduction and accumulation of H2O2 in and around infected cells. This oxidative burst acts as an intercellular signal, which elicits a specific host defence response phenotypically represented by the encasement of proliferating hyphae in extensions of the plant cell wall. Maize microarrays experiments were performed to identify genes involved in the observed plant defence responses on leaf tissue infected with U. maydis strain SG200∆fox1 4 dpi.
Project description:The biotrophic fungal pathogen Ustilago maydis cause common smut in maize, and lead to gall formation on all aerial organs, especially on maize kernel thus reduce yield. The interaction of U. maydis with maize is a well-established model to study the interaction between maize and biotrophic pathogen. U. maydis infection could activate host immune responses including: ROS accumulation, protease activation, salicylic acid signaling. U. maydis employ several strategies to overcome maize immune response, thus initial the biotrophic interaction with host. It has been suggested that genetic factors of maize host affected the disease severity of U. maydis infection, here we investigated the transcriptome profile of resistance and susceptible maize lines upon U. maydis infection, thus propose candidate maize genes involved in the defense response in maize to corn smut cause by U. maydis.
Project description:Ustilago maydis is a basidiomycete fungus that causes smut disease in maize. Most prominent symptoms of the disease are plant tumors, which can be induced by U. maydis on all aerial parts of the plant. We identified two linked genes, pit1 and pit2, which are specifically expressed during plant colonization. Deletion mutants for either pit1 or pit2 are unable to induce tumor development and elicit plant defense responses. We used the Affymetrix maize genome array to analyze the transcriptional responses of maize to deletion pit1 and pit2 mutants and found plant responses to both mutants being not significantly distinguishable.
Project description:Ustilago maydis is a basidiomycete fungus that causes smut disease in maize. Most prominent symptoms of the disease are plant tumors, which can be induced by U. maydis on all aerial parts of the plant. We identified two linked genes, pit1 and pit2, which are specifically expressed during plant colonization. Deletion mutants for either pit1 or pit2 are unable to induce tumor development and elicit plant defense responses. We used the Affymetrix maize genome array to analyze the transcriptional responses of maize to deletion pit1 and pit2 mutants and found plant responses to both mutants being not significantly distinguishable. U. maydis infected parts of maize seedling leaves were dissected 4 days after inoculation with strain SG200Dpit1 and SG200Dpit2, respectively. We previously submitted data of maize leaves that were treated with the progenitor wild type strain SG200 as well as mock-infections under identical experimetal conditions (GEO: GSE10023, 4d mock and 4d SG200 Samples, equivalent record in Arrayexpress: E-GEOD-10023). These data served as controls for this experiment.