Project description:MicroRNAs are small noncoding RNA molecules that are involved in the control of gene expression. To investigate the role of microRNA in multiple sclerosis (MS), we performed global microarray analyses of mRNA and microRNA in peripheral blood T-cells from relapsing-remitting MS patients and controls. We identified 2,452 regulated genes and 21 regulated microRNA that differed between MS patients and controls. By Kolmogorov-Smirnov test, 20 of 21 regulated microRNA were shown to affect the expression of their target genes, many of which are involved in the immune system. LIGHT (TNFSF14) was a microRNA target gene significantly decreased in MS. The down-regulation of mir-494 and predicted mRNA-target LIGHT was verified by real-time PCR and we could demonstrate decreased serum levels of LIGHT in MS. Thus, regulated microRNA were significantly associated with both gene and protein expression of a molecule in immunological pathways. These findings indicate that microRNA may be important regulatory molecules in T-cells in MS. Microarray expression analysis of mRNA and miRNA in peripheral blood T-cell of control and MS patients
Project description:MicroRNAs are small noncoding RNA molecules that are involved in the control of gene expression. To investigate the role of microRNA in multiple sclerosis (MS), we performed global microarray analyses of mRNA and microRNA in peripheral blood T-cells from relapsing-remitting MS patients and controls. We identified 2,452 regulated genes and 21 regulated microRNA that differed between MS patients and controls. By Kolmogorov-Smirnov test, 20 of 21 regulated microRNA were shown to affect the expression of their target genes, many of which are involved in the immune system. LIGHT (TNFSF14) was a microRNA target gene significantly decreased in MS. The down-regulation of mir-494 and predicted mRNA-target LIGHT was verified by real-time PCR and we could demonstrate decreased serum levels of LIGHT in MS. Thus, regulated microRNA were significantly associated with both gene and protein expression of a molecule in immunological pathways. These findings indicate that microRNA may be important regulatory molecules in T-cells in MS. Microarray expression analysis of mRNA and miRNA in peripheral blood T-cell of control andMS patients
Project description:MicroRNAs are small noncoding RNA molecules that are involved in the control of gene expression. To investigate the role of microRNA in multiple sclerosis (MS), we performed global microarray analyses of mRNA and microRNA in peripheral blood T-cells from relapsing-remitting MS patients and controls. We identified 2,452 regulated genes and 21 regulated microRNA that differed between MS patients and controls. By Kolmogorov-Smirnov test, 20 of 21 regulated microRNA were shown to affect the expression of their target genes, many of which are involved in the immune system. LIGHT (TNFSF14) was a microRNA target gene significantly decreased in MS. The down-regulation of mir-494 and predicted mRNA-target LIGHT was verified by real-time PCR and we could demonstrate decreased serum levels of LIGHT in MS. Thus, regulated microRNA were significantly associated with both gene and protein expression of a molecule in immunological pathways. These findings indicate that microRNA may be important regulatory molecules in T-cells in MS.
Project description:MicroRNAs are small noncoding RNA molecules that are involved in the control of gene expression. To investigate the role of microRNA in multiple sclerosis (MS), we performed global microarray analyses of mRNA and microRNA in peripheral blood T-cells from relapsing-remitting MS patients and controls. We identified 2,452 regulated genes and 21 regulated microRNA that differed between MS patients and controls. By Kolmogorov-Smirnov test, 20 of 21 regulated microRNA were shown to affect the expression of their target genes, many of which are involved in the immune system. LIGHT (TNFSF14) was a microRNA target gene significantly decreased in MS. The down-regulation of mir-494 and predicted mRNA-target LIGHT was verified by real-time PCR and we could demonstrate decreased serum levels of LIGHT in MS. Thus, regulated microRNA were significantly associated with both gene and protein expression of a molecule in immunological pathways. These findings indicate that microRNA may be important regulatory molecules in T-cells in MS.
Project description:Multiple sclerosis (MS) is a neurodegenerative disease with a presumed autoimmune component. Expression profiling in immune cells can therefore be used in order to identify genes and pathways involved in MS pathogenesis. We conducted a genome-wide expression study in peripheral blood mononuclear cells (PBMC) from 12 MS patients and 15 controls in order to identify differentially expressed genes and pathways in MS. PBMCs were isolated from whole blood and total RNA was extracted.
Project description:Multiple sclerosis (MS) is a neurodegenerative disease with a presumed autoimmune component. Expression profiling in immune cells can therefore be used in order to identify genes and pathways involved in MS pathogenesis. We conducted a genome-wide expression study in peripheral blood mononuclear cells (PBMC) from 12 MS patients and 15 controls in order to identify differentially expressed genes and pathways in MS.
Project description:Multiple sclerosis (MS) is an inflammatory disease of the central nervous system and is generally considered to be autoimmune in nature. We previously demonstrated that the transcription factor Sp3 is significantly down-regulated in immune cells from MS patients. The potential role of Sp3 down-regulation in MS pathogenesis is not well understood. The function of endogenous Sp3 was assessed in vitro after siRNA-mediated knockdown of its transcript in Jurkat cells. Sp3 protein levels were reduced an average of 70%. ELISA studies demonstrated decreased endogenous production of IL-10 and TGFβ1 and increased endogenous production of TNFα (p<0.05 in all assays). Subsequent microarray analysis demonstrated significantly altered expression of 36 genes (p<0.001 for each gene) compared with control samples. Analysis showed differential expression (p<0.005) of 8 gene pathways. Many of the genes and pathways that were regulated by Sp3 are involved in immune function, specifically with regard to apoptosis, cell-to-cell adhesion, integrin signaling, T-cell differentiation, and cytokine production. This study identifies mechanisms by which Sp3 may regulate immune function and suggests a basis for its potential contribution to MS disease pathogenesis. Keywords: siRNA knockdown; Jurkat T-cells; Multiple Sclerosis