Project description:Leukotriene (LT) D4 contributes to aberrant cytokine networks of classical Hodgkin lymphonoma, This study has investigated LTD4 induced gene expression and pathway in Hodgkin lymphonma cell line L1236.
Project description:Background: Cysteinyl leukotrienes (cysLTs) are important mediators of innate immune responsiveness and chronic inflammatory diseases. CysLTs acting through cysteinyl leukotriene receptors may influence the migration and activity of cells such as eosinophils, monocytes and dendritic cells. Objective: To determine the gene expression signature of human monocytes in response to cysLTs and to elucidate the signaling pathways involved in monocyte activation. Methods: Gene expression was analyzed using oligonucleotide microarrays. Responsiveness to cysLTs was assessed by real-time PCR, calcium flux, kinase activation and chemotaxis assays. Results: Cysteinyl leukotriene type I receptor (CysLTR1) transcript 1 is predominantly expressed in human monocytes and cysLTs signal through CysLTR1 in these cells. Several immediate-early genes, including early growth response (Egr) -2, 3, FosB, activating transcription factor 3 and nuclear receptor subfamily 4 were significantly induced by LTD4. This effect was mediated by CysLTR1 coupled to Gαi/o, activation of phospholipase C, and inositol-1,4,5-triphosphate (IP3) and store operated calcium channels. LTD4 induced p38 MAP kinase phosphorylation, a pathway also involved in the regulation of immediate-early genes expression in monocytes. LTD4 stimulated monocyte chemotactic activity that was fully blocked by a selective CysLTR1 inhibitor MK571 and pertussis toxin, suggesting that CysLTR1 coupled to Gαi/o is a dominant functional pathway in human monocytes. Conclusion: Our data show that cysLTs acting through CysLTR1 can significantly influence the activation and migration of human monocytes and that these effects can be fully inhibited by CysLTR1 antagonists. Clinical implications: Antileukotriene therapies are likely to significantly block the proinflammatory functions of human monocytes. Experiment Overall Design: 4 control sample, 4 LTD4 stimulated samples
Project description:Background: Cysteinyl leukotrienes (cysLTs) are important mediators of innate immune responsiveness and chronic inflammatory diseases. CysLTs acting through cysteinyl leukotriene receptors may influence the migration and activity of cells such as eosinophils, monocytes and dendritic cells. Objective: To determine the gene expression signature of human monocytes in response to cysLTs and to elucidate the signaling pathways involved in monocyte activation. Methods: Gene expression was analyzed using oligonucleotide microarrays. Responsiveness to cysLTs was assessed by real-time PCR, calcium flux, kinase activation and chemotaxis assays. Results: Cysteinyl leukotriene type I receptor (CysLTR1) transcript 1 is predominantly expressed in human monocytes and cysLTs signal through CysLTR1 in these cells. Several immediate-early genes, including early growth response (Egr) -2, 3, FosB, activating transcription factor 3 and nuclear receptor subfamily 4 were significantly induced by LTD4. This effect was mediated by CysLTR1 coupled to Gαi/o, activation of phospholipase C, and inositol-1,4,5-triphosphate (IP3) and store operated calcium channels. LTD4 induced p38 MAP kinase phosphorylation, a pathway also involved in the regulation of immediate-early genes expression in monocytes. LTD4 stimulated monocyte chemotactic activity that was fully blocked by a selective CysLTR1 inhibitor MK571 and pertussis toxin, suggesting that CysLTR1 coupled to Gαi/o is a dominant functional pathway in human monocytes. Conclusion: Our data show that cysLTs acting through CysLTR1 can significantly influence the activation and migration of human monocytes and that these effects can be fully inhibited by CysLTR1 antagonists. Clinical implications: Antileukotriene therapies are likely to significantly block the proinflammatory functions of human monocytes. Keywords: monocytes stimulated with LTD4
Project description:Cysteinyl leukotrienes (cysLT), i.e. LTC4, LTD4, and LTE4, are lipid mediators derived from the 5-lipoxygenase pathway. The cysLT receptors cysLT1-R and cysLT2-R are expressed on different target cells and mediate inflammatory reactions in tissue- and LT-R-specific ways. Though endothelial cells (ECs) predominantly express cysLT2-Rs, their role in vascular biology remains to be defined. To delineate cysLT2-R´s action, we stimulated human umbilical vein EC with 100 nM LTD4 for 60 min, determined gene signatures by microarrays, and characterized the resulting EC phenotypes. As controls, we compared LTD4-induced genes with those induced by 10 nM thrombin, a prototype vasoactive activator of EC that binds to protease-activated receptor 1 (PAR-1). Following application of stringent filters 37 LTD4-upregulated genes were identified (> 2.5fold stimulation). Surprisingly, most of the LTD4-regulated genes were also induced by thrombin and expression of cysLT2-R- and PAR-1-regulated genes strongly correlated (Pearson correlation coefficient: r = 0.90). Moreover, LTD4 + thrombin, when added together, augmented expression of LTD4- or thrombin-stimulated genes (Wilcoxon signed rank test: p < 0.01). Prominently induced genes that may play roles in vascular injury were studied in detail: Early growth response (EGR) and nuclear receptor subfamily 4 group A; E-selectin; CXC ligand 2; interleukin 8 (IL-8); a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif 1 (ADAMTS-1); and tissue factor (TF). Transcripts of these genes peaked at approximately 60 min, were unaffected by the cysLT1-R antagonist montelukast, and were superinduced by cycloheximide. The EC phenotype was markedly altered: LTD4 induced de novo synthesis of EGR1 protein and EGR1 localized in the nucleus in LTD4-stimulated cells; LTD4 upregulated IL-8 formation and secretion; and LTD4 raised TF protein and TF-dependent EC pro-coagulant activity. These data show that cysLT2-R activation results in a pro-inflammatory EC phenotype through activation of immediate-early genes that resemble those induced by PAR-1. As LTD4 and thrombin are formed concomitantly during vascular injury and pro-thrombotic states, cysLT2-R and PAR-1 may collaborate in vivo to mediate vascular injury and repair. Keywords: Leukotriene Transcriptome, Thrombin Transcriptome, HUVEC, Immediate-Early Gene Expression, Cysteinyl Leukotriene 2 Receptor Gene Signature in HUVEC
Project description:Analysis of differential gene expression in human non-Hodgkin`s lymphoma cell lines and a primary leukaemic tumor sample of large cell anaplastic type in comparison with Hodgkin`s lymphoma cell lines and other non-Hodgkin`s lymphoma samples and non-neoplastic lymphocytes Keywords: cell type comparison
Project description:Human umbilical vein endothelial cells (HUVEC) or the human macrophage cell line, Mono-Mac-6, treated with Leukotriene D4 for 1 hour