Project description:Tan Spot (TS), causal agent Pyrenophora tritici-repentis (Ptr), is a major threat to wheat production due to the lack of resistant cultivars. In our previous work, we identified MAGIC population parental lines exhibiting TS resistance and susceptibility, namely Robigus and Hereward, respectively. To understand the mechanisms underlying these phenotypes, we performed RNA-seq analysis of leaves before and during Ptr interaction. When comparing mock- and Ptr-inoculated samples, differentially expressed genes (DEGs) were identified with DESeq2, leading to the targeting of 15193 DEGs. Functional annotation showed the pathways enzyme classification, solute transport, RNA biosynthesis, protein modification and homeostasis represented 49.5% of DEGs in Robigus. Cellular metabolism pathways were induced, as well as vesicle trafficking, actin polymerization and cellulose. The upregulation of these cell wall related genes along with microscopic data suggested that barrier defence is a major feature of TS resistance in Robigus. Conversely, photosynthesis was the top fifth pathway in Hereward, totalling 389 repressed genes (12.63%). Photosynthesis collapse was linked to the activation of oligosaccharide metabolism and suppression of glycolysis, TCA cycle and amino acids degradation. This may reflect mobilization of host nutrients to Ptr. Our observations could inform wheat-breeding programmes targeting TS resistance.
Project description:The pangenome of the wheat pathogen Pyrenophora tritici-repentis reveals novel transposons associated with necrotrophic effectors ToxA and ToxB
Project description:Pyrenophora tritici-repentis, the causal agent of tan spot disease of wheat, mediates disease by the production of host-selective toxins (HST). The known toxins are recognized in an 'inverse' gene-for-gene manner, where each is perceived by the product of a unique locus in the host and recognition leads to disease susceptibility. Given the importance of HSTs in disease development, we would predict that the loss of any of these major pathogenicity factors would result in reduced virulence and disease development. However, after either deletion of the gene encoding the HST ToxA or, reciprocally, heterologous expression of ToxA in a race that does not normally produce the toxin followed by inoculation of ToxA-sensitive and insensitive wheat cultivars, we demonstrate that ToxA symptom development can be epistatic to other HST-induced symptoms. ToxA epistasis on certain ToxA-sensitive wheat cultivars leads to genotype-specific increases in total leaf area affected by disease. These data indicate a complex interplay between host responses to HSTs in some genotypes and underscore the challenge of identifying additional HSTs whose activity may be masked by other toxins. Also, through mycelial staining, we acquire preliminary evidence that ToxA may provide additional benefits to fungal growth in planta in the absence of its cognate recognition partner in the host.
Project description:Tan spot is a destructive foliar wheat disease worldwide and caused by the ascomycete fungus Pyrenophora tritici-repentis (Ptr); it has become more frequent in Tunisia over the last decade. In this study, the virulence of 73 single-spore isolates, collected from durum and bread wheat fields during 2017-2018 growing season, was evaluated on four differential wheat genotypes. This was followed by polymerase chain reaction tests with specific primers for the effector genes ToxA, ToxB, and toxb (ToxB-homolog). Sequence analysis to validate the identity of the amplified genes was followed, and ToxA amplicons from a subset of 22 isolates were analyzed to determine its haplotype identity. Ptr isolates from Tunisia were grouped in races 2, 4, 5, and 7, and 44% of the tested isolates did not fit under any known race, and were denoted here as atypical. These atypical isolates induced the same symptoms as race 7 isolates, extensive necrosis, and chlorosis on susceptible genotypes, but lacked the ToxA gene. ToxA is the only identified necrosis-inducing effector in Ptr, and was amplified in 51% of tested isolates, and shared identical sequence to previously identified haplotype (H15). ToxB and its homolog toxb were present in 97% and 93% of tested isolates, respectively. Ptr in Tunisia lacked Ptr ToxC activity, and none of the tested isolates induced the specific symptoms of that effector. Race 7 and the atypical isolates dominated the Tunisian Ptr population, while races 2, 4, and 5 were found at low percentages. In conclusion, ToxB and its homolog were the most dominant genes in Ptr from Tunisia, and the majority of the isolates induced necrosis and chlorosis on Ptr ToxA and Ptr ToxB susceptible wheat genotypes. However, only about half of that necrosis can be attributed to ToxA presence, this result necessitates further research to investigate the prevalence of additional necrotic effector(s). Terminology: in this paper, Pyrenophora tritici-repentis abbreviated as Ptr, the effectors are referred to by Ptr ToxA, Ptr ToxB and Ptr ToxC, and the genes coding for them are written in italic as ToxA, ToxB, and ToxC, respectively.
Project description:The ToxA effector is a major virulence gene of Pyrenophora tritici-repentis (Ptr), a necrotrophic fungus and the causal agent of tan spot disease of wheat. ToxA and co-located genes are believed to be the result of a recent horizontally transferred highly conserved 14kb region a major pathogenic event for Ptr. Since this event, monitoring isolates for pathogenic changes has become important to help understand the underlying mechanisms in play. Here we examined ToxA in 100 Ptr isolates from Australia, Europe, North and South America and the Middle East, and uncovered in isolates from Denmark, Germany and New Zealand a new variation, a novel 166 bp insertion element (PtrHp1) which can form a perfectly matched 59 bp inverted repeat hairpin structure located downstream of the ToxA coding sequence in the 3' UTR exon. A wider examination revealed PtrHp1 elements to be distributed throughout the genome. Analysis of genomes from Australia and North America had 50-112 perfect copies that often overlap other genes. The hairpin element appears to be unique to Ptr and the lack of ancient origins in other species suggests that PtrHp1 emerged after Ptr speciation. Furthermore, the ToxA UTR insertion site is identical for different isolates, which suggests a single insertion event occurred after the ToxA horizontal transfer. In vitro and in planta-detached leaf assays found that the PtrHp1 element insertion had no effect on ToxA expression. However, variation in the expression of ToxA was detected between the Ptr isolates from different demographic locations, which appears to be unrelated to the presence of the element. We envision that this discovery may contribute towards future understanding of the possible role of hairpin elements in Ptr.
Project description:Tan spot (TS), caused by the fugus Pyrenophora tritici-repentis (Ptr), has gained significant importance in the last few years, thereby representing a threat to wheat production in all major wheat-growing regions, including Tunisia. In this context, we evaluated a Mediterranean collection of 549 durum wheat accessions under field conditions for resistance to Ptr over two cropping seasons in Jendouba (Tunisia), a hot spot for Ptr. The relative disease severities showed significant phenotypic variation from resistance to susceptibility. The correlation between disease scores over the two trials was significant, as 50% of the accessions maintained good levels of resistance (resistant-moderately resistant). Seedling and adult-stage reactions were significantly correlated. The ANOVA analysis revealed that the genotype term is highly significant at the adult stage, thus emphasizing the high genetic variability of the tested accessions. Reaction-type comparison among and between countries revealed a high diversity of TS resistance. Plant height (PH) was negatively correlated to disease scores, indicating that PH might either have a significant effect on TS severity or that it can be a potential disease escape trait. The evaluation of this collection allowed for the identification of potential diverse resistance sources to Ptr that can be incorporated in breeding programs.
Project description:ObjectivesTan spot is a yield-reducing disease that affects wheat and is caused by the fungus Pyrenophora tritici-repentis (Ptr). Eight races of Ptr have been identified based upon production of the effectors Ptr ToxA, Ptr ToxB, and Ptr ToxC. Wheat cultivars have also been characterized by their resistance and susceptibility to races of Ptr and sensitivity to the effectors. The objective of this research was to assess differences in gene expression between Ptr resistant and susceptible wheat cultivars when either inoculated with Ptr race 2 spores or directly infiltrated with Ptr ToxA.Data descriptionA greenhouse experiment was used to assess wheat-Ptr interaction. Wheat seedlings were grown for two weeks prior to the experiment under greenhouse conditions. Four treatments were used: (1) spray-inoculation with a suspension of Ptr spores (3000 spores/mL) (2) spray inoculation with water as a control (3) needleless syringe injection with Ptr ToxA, and (4) needleless syringe injection with water as a control. Plants were transferred to a humidity chamber and leaf sample were taken at 0, 8, and 16 h. After RNA extraction and sequencing, 48 RNA datasets are reported. This data will be useful in understanding how resistant wheat responds to Ptr compared to susceptible wheat.
Project description:BackgroundThe necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) causes tan (syn. yellow) spot of wheat and accounts for significant yield losses worldwide. Understanding the molecular mechanisms of this economically important crop disease is crucial to counteract the yield and quality losses of wheat globally. Substantial progress has been made to comprehend the race structure of this phytopathogen based on its production of necrotrophic effectors and genomic resources of Ptr. However, one limitation for studying Ptr in a laboratory environment is the difficulty to isolate high spore numbers from vegetative growth with mycelial contamination common. These limitations reduce the experimental tractability of Ptr.ResultsHere, we optimized a multitude of parameters and report a sporulation method for Ptr that yields robust, high quality and pure spores. Our methodology encompasses simple and reproducible plugging and harvesting techniques, resulting in spore yields up to 1500 fold more than the current sporulation methods and was tested on multiple isolates and races of Ptr as well as an additional seven modern Australian Ptr isolates. Moreover, this method also increased purity and spore harvest numbers for two closely related fungal pathogens (Pyrenophora teres f. maculata and f. teres) that cause net blotch diseases in barley (Hordeum vulgare), highlighting the usability of this optimized sporulation protocol for the wider research community.ConclusionsLarge-scale spore infection and virulence assays are essential for the screening of wheat and barley cultivars and combined with the genetic mapping of these populations allows pinpointing and exploiting sources of host genetic resistance. We anticipate that improvements in spore numbers and purity will further advance research to increase our understanding of the pathogenicity mechanisms of these important fungal pathogens.