Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity.
Project description:Arabidopsis thaliana mutant sr45-1 has an altered flower shape. sr45 is a splicing regulator. In this study, we examined the proteins from inflorescence of sr45-1 mutant plants and wild-type. Wild type TMT labels: 126, 128, 130. sr45-1 TMT labels: 127, 129, 131.
Project description:To identify genes of the guard cell transkriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. Ost1-2 and slac1-3 mutants were compared to their wildtype.
Project description:How bacteria from the microbiota modulate the physiology of its host is an important question to address. Previous work revealed that the metabolic status of Arabidopsis thaliana was crucial for the specific recruitment of Streptomycetaceae into the microbiota. Here, the Arabidopsis-Actinacidiphila interaction was further depicted by inoculating axenic Arabidopsis with Actinacidiphila cocklensis DSM 42063 or Actinacidiphila bryophytorum DSM 42138(previously named Streptomyces cocklensis and Streptomyces bryophytorum). We demonstrated that these two bacteria colonize A. thaliana wild-type plants, but their colonization efficiency was reduced in a chs5 mutant with defect in isoprenoid, phenylpropanoids and lipids synthesis. We observed that those bacteria affect the growth of the chs5 mutant but not of the wild-type plants. Using a mass spectrometry-based proteomic approach, we showed a modulation of the Arabidopsis proteome and in particular its components involved in photosynthesis or phytohormone homeostasis or perception by A. cocklensis and A. bryophytorum. This study unveils specific aspects of the Actinacidiphila-Arabidopsis interaction, which implies molecular processes impaired in the chs5 mutant and otherwise at play in the wild-type. More generally, this study highlights complex and distinct molecular interactions between Arabidopsis thaliana and bacteria belonging to the Actinacidiphila genus.
Project description:The overall objective was to document transcriptomic changes in the guard cells of Arabidopsis thaliana under short (1x) - and long-term (3x) saline growth conditions. Guard cells of Arabidopsis responded also to the intensity of the salt management by the microarray datasets clearly clustering in (-) salt, 1x salt and 3x salt. Similarly, more GO terms were significantly enriched in differentially expressed guard cell genes of 1 x salt than 3x salt treated plants.
Project description:Heterotrimeric G proteins mediate crucial and diverse signaling pathways in eukaryotes. To gain insights into the regulatory modes of the G protein and the co-regulatory modes of the G protein and the stress hormone abscisic acid (ABA), we generated and analyzed gene expression in G protein subunit single and double mutants of the model plant Arabidopsis thaliana. Through a Boolean modeling approach, our analysis reveals novel modes of heterotrimeric G protein action. Keywords: transcriptome analysis; G protein subunit mutants; abscisic acid (ABA) Microarray data were generated from four genotypes (wild type, gpa1-4 mutant, agb1-2 mutant, agb1-2 gpa1-4 double mutant) with or without ABA treatment. Arabidopsis plants were grown in growth chambers with an 8 hr light/16hr dark. Three hundred Arabidopsis leaves excised from 60-70 five-week-old plants were used as the starting material for each guard cell microarray. Ten mature leaves taken from 3-4 plants grown side-by side with the plants for guard cell isolation were used for each leaf sample. Excised leaf and isolated guard cell samples were treated with ABA (50 μM) or EtOH (solvent control) for 3 hrs. For each type of sample (guard cells or leaves), three independent biological replicates were performed, resulting in a total of 48 microarray hybridizations (2 sample types ´ 4 genotypes ´ two treatments ´3 replicates).