ABSTRACT: Whole-genome shotgun assembly and analysis of the genome of Streptomyces mobaraensis DSM 40847, a strain for industrial production of microbial transglutaminase
Project description:Bacterial genomic plasticity and instability carry multiple functional genetic information in Streptomyces secondary metabolism. Our previously publication has reported an effective industrial Streptomyces strain, with a unique phenotype of the high clavulanic acid yield. The complete genome of strain F163-1 harboring a 136.9-kb giant region of plasticity (RGP) was sequenced. The chromosome and plasmid are densely packed by an exceptionally huge variety of potential secondary metabolic gene clusters, excluding production of putative antibiotics. Intriguingly, architecture and size differences of plasmid pSCL4 between F613-1 and ATCC 27064 suggest the pSCL4 plasmid evolving from pSCL4-like and pSCL2-like extrachromosomal replicons, in addition to the previously proposed ATCC 27064 mega-plasmid formation hypothesis through recombination between the smaller F613-1 pSCL4 plasmid arm regions and the linear chromosome. Comparative genomics systemically investigate secondary metabolism capacitates in this study indicates that frequent exchange of genetic materials between Streptomyces replicons may shape remarkable diversities of secondary metabolite repertoires. Consequently, the F613-1 strain seems to have evolved its specific genomic architectures and genetic patterns to meet the requirement in subsequent industrial processes.
Project description:This study compared the genome of Streptomyces rimosus rimosus against that of Streptomyces coelicolor. It also compared 4 strains with changes in oxytetracycline production and derived from G7, the type strain, against G7. Keywords: Comparative genomic hybridization
Project description:FK506 (tacrolimus) is a valuable immunosuppressant produced by several Streptomyces strains. In the genome of the wild type producer Streptomyces tsukubaensis NRRL18488 FK506 biosynthesis is encoded by a gene cluster that spans 83.5 kilobases. A whole transcriptome differential shotgun sequencing of S. tsukubaensis was performed to analyze transcription at two different time points; before and during active FK506 production. In total 8,914 transcription start sites were identified in either condition, which enabled precise determination of the 5'-UTR length of the corresponding transcripts as well as the identification of two consensus sequence motifs in the promoter regions. The transcription start sites of all gene operons within the FK506 cluster were identified, including three examples of leaderless RNA transcripts. These data provide detailed insight into the transcription of the FK506 biosynthetic gene cluster and supports future regulatory studies and genetic manipulations.
2017-07-05 | GSE92480 | GEO
Project description:Multi-omics Investigation of High-transglutaminase Production Mechanisms in Streptomyces mobaraensis and Co-culture-enhanced Fermentation Strategies