Project description:Elevated plasma levels of High Density Lipoprotein (HDL) are associated with decreased risk of cardiovascular disease (CVD). The protective role of HDL in atherosclerosis has been attributed primarily to its ability to remove excess cholesterol from lipid-laden macrophages (foam cells) within the arterial walls. However, clinical trials that raise HDL cholesterol levels have failed to show a benefit casting doubts on our basic understanding of HDL function. Atherosclerosis is a chronic inflammatory condition underlying CVD and driven in part by the recognition of metabolic danger signals by innate immune receptors on macrophages. A potential feature that could contribute to HDL’s protective effects in CVD could be HDL's anti-inflammatory nature, such as its ability to reduce endothelial cell activation. However, the molecular mechanisms by which HDL reduces inflammatory macrophage responses remain poorly understood and difficult to separate from its cholesterol depleting activity. Here we show that HDL protects against Toll like receptor (TLR)-induced inflammation both in vivo and in vitro under normocholesteremic conditions by suppressing the transcription of inflammatory cytokines in a manner independent of its ability to remove cellular cholesterol. We identify Activating Transcription Factor 3 (ATF3), a transcriptional repressor of the CREB family of basic leucine zipper transcription factors, as a HDL-inducible regulator of macrophage activation. HDL’s ability to down modulate TLR responses was severely compromised in ATF3-deficient cells demonstrating that ATF3 mediates HDL's anti-inflammatory effects and may explain the broad anti-inflammatory functions of HDL.
Project description:Elevated plasma levels of High Density Lipoprotein (HDL) are associated with decreased risk of cardiovascular disease (CVD). The protective role of HDL in atherosclerosis has been attributed primarily to its ability to remove excess cholesterol from lipid-laden macrophages (foam cells) within the arterial walls. However, clinical trials that raise HDL cholesterol levels have failed to show a benefit casting doubts on our basic understanding of HDL function. Atherosclerosis is a chronic inflammatory condition underlying CVD and driven in part by the recognition of metabolic danger signals by innate immune receptors on macrophages. A potential feature that could contribute to HDL’s protective effects in CVD could be HDL's anti-inflammatory nature, such as its ability to reduce endothelial cell activation. However, the molecular mechanisms by which HDL reduces inflammatory macrophage responses remain poorly understood and difficult to separate from its cholesterol depleting activity. Here we show that HDL protects against Toll like receptor (TLR)-induced inflammation both in vivo and in vitro under normocholesteremic conditions by suppressing the transcription of inflammatory cytokines in a manner independent of its ability to remove cellular cholesterol. We identify Activating Transcription Factor 3 (ATF3), a transcriptional repressor of the CREB family of basic leucine zipper transcription factors, as a HDL-inducible regulator of macrophage activation. HDL’s ability to down modulate TLR responses was severely compromised in ATF3-deficient cells demonstrating that ATF3 mediates HDL's anti-inflammatory effects and may explain the broad anti-inflammatory functions of HDL. Bone marrow-derived macrophages (BMDMs) were obtained by culturing bone marrow cells from 6 to 8 week old wildtype C57BL/6 mice in DMEM supplemented with 10% FCS, 10 mg ml-1 Ciprobay-500 and 40 ng ml-1 M-CSF (R & D Systems). BMDMs of wt mice were pretreated for 6 h with HDL (2 mg ml-1 ) then stimulated with CpG (100 nM) for 4 h. Further wild type or Atf3-deficient BMDMs were pretreated with 2 mg ml-1 HDL for 6 h and subsequently stimulated with CpG (100 nM) or P3C (50 ng ml-1) for 4 h. For carotid artery injury approximately 12-week old male WT and Atf3-deficient mice were anesthetized with i.p. injection of 150 mg/kg ketaminehydrochloride (Ketanest, Pharmacia) and 0.1 mg/kg xylazinehydrochloride (Rompun 2%, Bayer). A small incision from the cranial apex of the sternum to just below the mandible was made. After careful preparation of an approximately 6 mm long segment proximal of the bifurcation, the common carotid artery was electrically denuded. A 4 mm long lesion was made by applying two serial 5 second bursts of 2 Watt using 2 mm wide forceps. The skin was then sutured and the mice allowed to recover in individual cages before returning to their littermates. Three hours later the mice received a single 200 ?l i.v. injection of 20 mg/kg HDL or PBS.
Project description:HDL infusion reduces atherosclerosis in animal models and is being evaluated as a treatment in humans. While some studies have shown anti-inflammatory effects of HDL in macrophages, others have reported pro-inflammatory effects and there is no consensus on underlying mechanisms. Transcriptional profiling reveals that HDL-mediated cholesterol efflux leads to both pro- and anti-inflammatory effects in LPS-stimulated macrophages. While early anti-inflammatory effects reflect reduced TLR4 levels, late anti-inflammatory effects are due to reduced interferon receptor signaling. Pro-inflammatory effects occur late and are ER stress responses mediated by IRE1a/ASK1/p38 MAPK signaling under conditions of marked cholesterol depletion. rHDL infusions in hypercholesterolemic atherosclerotic mice produced moderate anti-inflammatory effects in lesional macrophages without pro-inflammatory gene expression changes suggesting a beneficial therapeutic effect of HDL in vivo.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Project description:BackgroundLong terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes.ResultsUsing a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time.ConclusionsAll families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
Project description:House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (≤50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers.
Project description:A transcriptome study in mouse hematopoietic stem cells was performed using a sensitive SAGE method, in an attempt to detect medium and low abundant transcripts expressed in these cells. Among a total of 31,380 unique transcript, 17,326 (55%) known genes were detected, 14,054 (45%) low-copy transcripts that have no matches to currently known genes. 3,899 (23%) were alternatively spliced transcripts of the known genes and 3,754 (22%) represent anti-sense transcripts from known genes.