Project description:Polylactic acid (PLA) is a promising biodegradable material used in various fields, such as mulching films and disposable packaging materials. Biological approaches for completely degrading biodegradable polymers can provide environmentally friendly solutions. However, to our knowledge, no studies have performed transcriptome profiling to analyze PLA-degrading genes of PLA-degrading bacteria. Therefore, this study reports for the first time an RNA sequence approach for tracing genes involved in PLA biodegradation in the PLA-degrading bacterium Brevibacillus brevis. In the interpretation results of the differentially expressed genes, the hydrolase genes mhqD and nap and the serine protease gene besA were up-regulated by a fold change of 7.97, 4.89, and 4.09, respectively. This result suggests that hydrolases play a key role in PLA biodegradation by B. brevis. In addition, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that genes implicated in biofilm formation were upregulated. The biodegradation of PLA starts with bacteria attaching to the surface of PLA and forming a biofilm. Therefore, it could be confirmed that the above genes were up-regulated for access to PLA and biodegradation. Our results provide transcriptome-based insights into PLA biodegradation, which pitch a better understanding of microbial biodegradation of plastics.