Project description:By 4C-seq protocol we investigated DNA contacts across the genome by the FLC gene in the model plant Arabidopsis thaliana in order to explore a potential role of long-distance chromosomal interactions in the regulation of flowering.
Project description:Identification of differentially expressed genes in Arabidopsis thaliana mutants in response to combined abiotic stress treatment through Microarray experiment.
Project description:How bacteria from the microbiota modulate the physiology of its host is an important question to address. Previous work revealed that the metabolic status of Arabidopsis thaliana was crucial for the specific recruitment of Streptomycetaceae into the microbiota. Here, the Arabidopsis-Actinacidiphila interaction was further depicted by inoculating axenic Arabidopsis with Actinacidiphila cocklensis DSM 42063 or Actinacidiphila bryophytorum DSM 42138(previously named Streptomyces cocklensis and Streptomyces bryophytorum). We demonstrated that these two bacteria colonize A. thaliana wild-type plants, but their colonization efficiency was reduced in a chs5 mutant with defect in isoprenoid, phenylpropanoids and lipids synthesis. We observed that those bacteria affect the growth of the chs5 mutant but not of the wild-type plants. Using a mass spectrometry-based proteomic approach, we showed a modulation of the Arabidopsis proteome and in particular its components involved in photosynthesis or phytohormone homeostasis or perception by A. cocklensis and A. bryophytorum. This study unveils specific aspects of the Actinacidiphila-Arabidopsis interaction, which implies molecular processes impaired in the chs5 mutant and otherwise at play in the wild-type. More generally, this study highlights complex and distinct molecular interactions between Arabidopsis thaliana and bacteria belonging to the Actinacidiphila genus.
Project description:Gene-expression divergence between species shapes morphological evolution, but the molecular basis is largely unknown. Here we show cis- and trans-regulatory elements and chromatin modifications on gene-expression diversity in genetically tractable Arabidopsis allotetraploids. In Arabidopsis thaliana and Arabidopsis arenosa, both cis and trans with predominant cis-regulatory effects mediate gene-expression divergence. The majority of genes with both cis- and trans-effects are subjected to compensating interactions and stabilizing selection. Interestingly, chromatin modifications correlate with cis - and trans -regulation. In F1 allotetraploids, Arabidopsis arenosa trans factors predominately affect allelic expression divergence. Arabidopsis arenosa trans factors tend to upregulate Arabidopsis thaliana alleles, whereas Arabidopsis thaliana trans factors up- or down-regulate Arabidopsis arenosa alleles. In resynthesized and natural allotetraploids, trans effects drive expression of both homoeologous loci into the same direction. We provide evidence for natural selection and chromatin regulation in shaping gene-expression diversity during plant evolution and speciation.