Project description:Cold exposure imposes a metabolic challenge to mammals that must be met by a coordinated repsonse in different tissues to prevent hypothermia. This study reports analysis of transcriptome profiles in brown adipose tissue, liver, white adipose of mice in repsonse to 24 hour cold exposure Total RNA was extracted from brown adipose, whie adipose and liver from cold treated and control plants. 3 replicates of brown adipose and white adipose and 2 replicates of liver samples.
Project description:Histones were isolated from brown adipose tissue and liver from mice housed at 28, 22, or 8 C. Quantitative top- or middle-down approaches were used to quantitate histone H4 and H3.2 proteoforms. See published article for complimentary RNA-seq and RRBS datasets.
Project description:Cold exposure imposes a metabolic challenge to mammals that must be met by a coordinated repsonse in different tissues to prevent hypothermia. This study reports analysis of transcriptome profiles in brown adipose tissue, liver, white adipose of mice in repsonse to 24 hour cold exposure
Project description:We applied a deep-sequencing based method – digital gene expression profiling (DGEP), to investigate gene expression in interscapular brown adipose tissue (iBAT), inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) in acute cold exposure
Project description:Abstract
Brown and brite adipocytes are the key cells performing uncoupling protein 1 (UCP1) dependent non-shivering thermogenesis (NST) induced by cold exposure. Several lipid species are associated to NST in brown and white adipose tissue. Studies investigating the association of the lipid profile with NST rely on the analysis of whole organ homogenates or on the differentiation of pre-adipocytes in vitro. These approaches have so far not addressed the heterogeneity of white adipose tissue. Aim of this study was to characterize the lipid composition of white adipose tissue on a region-specific level in an in vivo context.
We applied MALDI mass spectrometry imaging (MALDI-MSI) in combination with immunohistochemistry and high-resolution mass spectrometry on sections of inguinal white adipose tissue of 129S6/SvEvTac and C57BL6/N-UCP1 knockout and wildtype mice acclimatized to cold to identify lipids specific to areas of UCP1 expression.
Based on the analysis of cold exposed 129S6/SvEvTac mice we identified cardiolipins (CL) and diacylglycerols (DG) species to be specific for areas expressing UCP1 and triacylglycerols (TG) to be the main lipid class characteristic for UCP1 negative regions within inguinal white adipose tissue. Investigation of C57BL6/N-UCP1 knockout and wildtype mice housed at either room temperature or acclimatized to cold, demonstrated that CL content in white adipose tissue is increased upon cold stimulation, independent of UCP1.
We introduce a MALDI-MSI based approach to identify lipids associated to thermogenic adipocytes in adipose tissues demonstrating a clear regional cold dependent upregulation of CL independent of UCP1.
Project description:Brown and beige fat share a remarkably similar transcriptional program that supports fuel oxidation and thermogenesis. The chromatin-remodeling machinery that governs genome accessibility and renders adipocytes poised for thermogenic activation remains elusive. BAF60a serves an indispensable role in cold-induced thermogenesis in brown fat. Surprisingly, fat-specific BAF60a inactivation triggers more pronounced browning of inguinal white adipose tissue. These results suggest a dichotomous role of BAF60a-mediated chromatin remodeling in transcriptional control of brown and beige gene programs. To elucidate the mechanism, we performed microarray annalysis in inguinal white adipose tissues from mice after chronic cold exposure.
Project description:We applied a deep-sequencing based method – digital gene expression profiling (DGEP), to investigate gene expression in interscapular brown adipose tissue (iBAT), inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) in acute cold exposure Examination of gene expression level in 3 different adipose tissues in 3 time points, day0, day2 and day4 in cold exposure.