Project description:A mapping population of Brassica rapa (BraIRRI, IMB211xR500) was grown under four external calcium and magnesium concentrations in controlled conditions. RNA was extracted and hybridised to the Affymetrix Brassica Exon 1.0 ST array. The aim of the experiment was to identify cis- and trans- expression quantitative trait loci.
Project description:A mapping population of Brassica rapa (BraIRRI, IMB211xR500) was grown under four external calcium and magnesium concentrations in controlled conditions. RNA was extracted and hybridised to the Affymetrix Brassica Exon 1.0 ST array. The aim of the experiment was to identify cis- and trans- expression quantitative trait loci. In total 279 samples were analysed. The parents of the mapping population were grown at all four treatment levels (LL, HL, LH, HH) with three biological replicates per treatment, plus 12 technical replicates (n=36). A 2x2 combination of external calcium and magnesium concentrations were imposed to give four treatments (LL, HL, LH, HH) as follows: the high (H) concentrations were 3.5 g L-1 (24 mM) CaCl2 and 3.04 g L-1 (15 mM) MgCl2 and the low (L) concentrations were 0.44 g L-1 (3 mM) CaCl2 and 0.2 g L-1 (1 mM) MgCl2 For the mapping population (total = 85 lines), 85 lines were analysed for the LL treatment, 81 lines were analysed for the LH treatment and 65 lines were analysed for the HL treatment. Twelve technical replicates were also analysed.
Project description:Among Brassica rapa, rapid cycling Brassica rapa and Brassica rapa inbred line Kenshin showed contrasting leaf morphology. To identify genes associated with leaf morphology, four distinct F2 progeny of RcBr X Kenshin cross and their parents were selected. Leaf samples were collected from 6 materials, isolated total RNA, and subjected to newly developved 135K microarray. Experiments were performed with three or two biologic
Project description:Transcription profiling by array of 10 days old Brassica rapa ssp. chinensis seedlings treated with 2mM methyl jasmonate by spraying and harvesting 48 hours past treatment
Project description:Root and leaf samples from Brassica rapa line R-O-18 were compared. The results will be compared to the same samples hybridised to the Affymetrix Brassica Exon 1.0 ST array.
Project description:The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. Deep RNA-Seq of two Brassica rapa genotypesâR500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)âusing eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. In this experiment, two pools were made, with one pool consisting of 66 samples collected from growth chamber and another pool consisting of 60 samples collected from greenhouse and field. Each pool was sequenced on eight lanes (total 16 lanes) of an Illumina Genome Analyzer (GAIIx) as 100-bp paired end reads.
Project description:Purpose: Zinc deficiency (ZnD) and iron deficiency (FeD), excess Zn (ZnE) and cadmium exposure (CdE) are major environmental problems for crop cultivation. Methods: Applying Tag-Seq technology to leaves of Brassica rapa grown under FeD, ZnD, ZnE or CdE conditions, with normal conditions as a control, we examined global gene expression changes and compared the expression patterns of multiple paralogs. Results: We identified 812, 543, 331 and 447 differentially expressed genes under FeD, ZnD, ZnE and CdE conditions, respectively, in B. rapa leaves.Further analysis revealed that genes associated with Zn, Fe and Cd responses tended to be over-retained in the B. rapa genome. Most of these multiple-copy genes showed the same direction of expression change under stress conditions. Conclusion: We conclude that the duplicated genes involved in trace element responses in B. rapa are functionally redundant, making the regulatory network more complex in B. rapa than in Arabidopsis thaliana.
Project description:Root and leaf samples from Brassica rapa line R-O-18 were compared. The results will be compared to the same samples hybridised to the Affymetrix Brassica Exon 1.0 ST array. 6 samples were hybridised. Triplcate samples of 11 day old roots and 2 semi-expanded leaves from 23 day old Brassica rapoa R-O-18 plants.
Project description:Purpose: Zinc deficiency (ZnD) and iron deficiency (FeD), excess Zn (ZnE) and cadmium exposure (CdE) are major environmental problems for crop cultivation. Methods: Applying Tag-Seq technology to leaves of Brassica rapa grown under FeD, ZnD, ZnE or CdE conditions, with normal conditions as a control, we examined global gene expression changes and compared the expression patterns of multiple paralogs. Results: We identified 812, 543, 331 and 447 differentially expressed genes under FeD, ZnD, ZnE and CdE conditions, respectively, in B. rapa leaves.Further analysis revealed that genes associated with Zn, Fe and Cd responses tended to be over-retained in the B. rapa genome. Most of these multiple-copy genes showed the same direction of expression change under stress conditions. Conclusion: We conclude that the duplicated genes involved in trace element responses in B. rapa are functionally redundant, making the regulatory network more complex in B. rapa than in Arabidopsis thaliana. In total, there were 15 Digital gene expression libraries, one for each of the three replicates under the four trace metal element treatments and normal nutrient supply conditions as a control.