Project description:Combination therapies targeting malignancies aim to increase treatment efficacy and reduce toxicity. Hypomethylating drug 5-Aza-2’-deoxycytidine (5-Aza-2’) enhances transcription of tumor suppressor genes and induces replication errors via entrapment of DNMT1. Post-translational modification by SUMO plays major roles in the DNA damage response and is required for degradation of entrapped DNMT1. Here, we combine SUMOylation inhibitor TAK981 and DNA-hypomethylating agent 5-Aza-2’ to improve treatment of MYC driven hematopoietic malignancies, since MYC overexpressing tumors are sensitive to SUMOylation inhibition. We studied the classical MYC driven malignancy Burkitt lymphoma, as well as diffuse large B-cell lymphoma (DLBCL) with and without MYC translocation. SUMO inhibition prolonged the entrapment of DNMT1 to DNA, resulting in DNA damage. An increase in DNA damage was observed in cells co-treated with TAK981 and 5-Aza-2’. Both drugs synergized to reduce cell proliferation in vitro in a B cell lymphoma cell panel, including Burkitt lymphoma and DLBCL. In vivo experiments combining TAK981 (25 mg/kg) and 5-Aza-2’ (2.5 mg/kg) showed a significant reduction in outgrowth of Burkitt lymphoma in an orthotopic xenograft model. In contrast, single dosing of TAK981 was ineffective and single dosing of 5-Aza-2’ only led to a modest outgrowth reduction. TAK981 and 5-Aza-2’ synergize to reduce B cell Lymphoma outgrowth in vitro and in vivo. SUMOylation is a key-player in the repair of DNA damage, hence upon TAK981 treatment the repair of DNA damage induced by 5-Aza-2’ treatment is impaired. Our results demonstrate the potential of tailored combination of drugs, based on insight in molecular mechanisms, to improve the efficacy of cancer therapies.
Project description:Combination therapies targeting malignancies aim to increase treatment efficacy and reduce toxicity. Hypomethylating drug 5-Aza-2’-deoxycytidine (5-Aza-2’) enhances transcription of tumor suppressor genes and induces replication errors via entrapment of DNMT1. Post-translational modification by SUMO plays major roles in the DNA damage response and is required for degradation of entrapped DNMT1. Here, we combine SUMOylation inhibitor TAK981 and DNA-hypomethylating agent 5-Aza-2’ to improve treatment of MYC driven hematopoietic malignancies, since MYC overexpressing tumors are sensitive to SUMOylation inhibition. We studied the classical MYC driven malignancy Burkitt lymphoma, as well as diffuse large B-cell lymphoma (DLBCL) with and without MYC translocation. SUMO inhibition prolonged the entrapment of DNMT1 to DNA, resulting in DNA damage. An increase in DNA damage was observed in cells co-treated with TAK981 and 5-Aza-2’. Both drugs synergized to reduce cell proliferation in vitro in a B cell lymphoma cell panel, including Burkitt lymphoma and DLBCL. In vivo experiments combining TAK981 (25 mg/kg) and 5-Aza-2’ (2.5 mg/kg) showed a significant reduction in outgrowth of Burkitt lymphoma in an orthotopic xenograft model. In contrast, single dosing of TAK981 was ineffective and single dosing of 5-Aza-2’ only led to a modest outgrowth reduction. TAK981 and 5-Aza-2’ synergize to reduce B cell Lymphoma outgrowth in vitro and in vivo. SUMOylation is a key-player in the repair of DNA damage, hence upon TAK981 treatment the repair of DNA damage induced by 5-Aza-2’ treatment is impaired. Our results demonstrate the potential of tailored combination of drugs, based on insight in molecular mechanisms, to improve the efficacy of cancer therapies.
Project description:To screen for epigenetically silenced miRNAs, wecarried out miRNA microarray analysis in three colorectal cancer (CRC) cell lines (HCT116, DLD-1 and RKO) treated with or without 5-aza-2'-deoxycytidine (aza). HCT116 and RKO cells were also treated with aza plus 4-phenylbutyric acid (PBA). In addition, we analyzed HCT116 cells in which the DNA methyltransferase genes DNMT1 and DNMT3B were genetically disrupted (double knockout; DKO cells), thereby abrogating DNA methylation. Expression of a majority of miRNAs was downregulated in all three CRC cell lines tested, as compared to normal colonic mucosa. DAC treatment upregulated expression of a large number of miRNAs in all three CRC cell lines, and combination treatment with DAC plus PBA induced even greater numbers of miRNAs in CRC cells. The most profound effect on the miRNA expression profile was induced by genetic disruption of DNMT1 and DNMT3B in HCT116 cells. CRC cells were treated with 5-aza-2’-deoxycytidine (aza) or aza plus 4-phenylbutyrate (PBA). Nomal colon RNA was purchased from BioChain. Expression of 470 miRNAs was analyzed using Human miRNA Microarray V1 (G4470A; Agilent technologies, Santa Clara, CA, USA).
Project description:Promoter methylation is able to induce downregulation of gene expression. 5-Aza-2'-deoxycytidine(Aza), methytransferase inhibitor, induce CpG demethylation. Here, 5-Aza-2'-deoxycytidine(Aza) is treated in a human breast cancer cell, MCF7, for detection of gene expression change.
Project description:To screen for epigenetically silenced miRNAs, wecarried out miRNA microarray analysis in three colorectal cancer (CRC) cell lines (HCT116, DLD-1 and RKO) treated with or without 5-aza-2'-deoxycytidine (aza). HCT116 and RKO cells were also treated with aza plus 4-phenylbutyric acid (PBA). In addition, we analyzed HCT116 cells in which the DNA methyltransferase genes DNMT1 and DNMT3B were genetically disrupted (double knockout; DKO cells), thereby abrogating DNA methylation. Expression of a majority of miRNAs was downregulated in all three CRC cell lines tested, as compared to normal colonic mucosa. DAC treatment upregulated expression of a large number of miRNAs in all three CRC cell lines, and combination treatment with DAC plus PBA induced even greater numbers of miRNAs in CRC cells. The most profound effect on the miRNA expression profile was induced by genetic disruption of DNMT1 and DNMT3B in HCT116 cells.
Project description:Promoter methylation is able to induce downregulation of gene expression. 5-Aza-2'-deoxycytidine(Aza), methytransferase inhibitor, induce CpG demethylation. Here, 5-Aza-2'-deoxycytidine(Aza) is treated in a human breast cancer cell, MCF7, for detection of gene expression change. To analyze gene expression change by aza, control RNA isolated from MCF-7 was compared with RNA isolated from MCF-7 treated with 5uM and 10uM aza.