Project description:Intra-specific polymorphism in copy number is documented in many organisms, including human and chimpanzee, but very little is known for other great apes. This study aims to provide CNVs data for orangutan, gorilla, bonobo and chimpanzee, and compare the CNV patterns among these species, as well as with human CNVs and segmental duplications from public databases.
Project description:Whole genome shotgun bisulfite sequencing, small RNA sequencing and transcriptome sequencing of wildtype Arabidopsis plants (Col-0), and met1, drm1 drm2 cmt3, and ros1 dml2 dml3 null mutants using the Illumina Genetic Analyzer. A comparison was performed with regions of the genome containing cytosine DNA methylation identified by methylcytosine immunoprecipitation and whole-genome oligonucleotide tiling microarrays, for wildtype Col-0. Understanding the epigenetic regulatory mechanisms that mediate control of transcription at multiple levels is critical to understanding how plants develop and respond to their environment. We combined next-generation sequencing by synthesis (SBS) technology with novel methods for direct sequencing of the entire cytosine methylome (methylC-seq), transcriptome (RNA-seq), and the small RNA component of the transcriptome (smRNA-seq) to create a set of highly integrated epigenome maps for Arabidopsis thaliana, in conjunction with a set of informative mutants defective in DNA methyltransferase and DNA demethylase activity. At single-base resolution we discovered extensive, previously undetected, DNA methylation, identified the context and level of methylation at each site, and found that local composition has effects upon DNA methylation state. Deep sequencing of the smRNAome exposed a direct relationship between the location and abundance of smRNAs and DNA methylation, perturbation of smRNA biogenesis upon loss of CpG DNA methylation, and a tendency for smRNAs to direct strand-specific DNA methylation in the region of RNA-DNA homology. Finally, strand-specific RNA-seq revealed changes in the transcript abundance of hundreds of genes upon alteration of the DNA methylation state, and enabled the identification of numerous previously unidentified genes regulated by DNA methylation. Keywords: Whole genome shotgun bisulfite sequencing, small RNA sequencing, transcriptome sequencing, methylcytosine immunoprecipitation, whole-genome oligonucleotide tiling microarrays Whole genome shotgun bisulfite sequencing, small RNA sequencing and transcriptome sequencing of wildtype Arabidopsis plants (Col-0), and met1, drm1 drm2 cmt3, and ros1 dml2 dml3 null mutants using the Illumina Genetic Analyzer. A comparison was performed with regions of the genome containing cytosine DNA methylation identified by methylcytosine immunoprecipitation and whole-genome oligonucleotide tiling microarrays, for wildtype Col-0.
Project description:Part of a set of highly integrated epigenome maps for Arabidopsis thaliana. Keywords: Illumina high-throughput bisulfite sequencing Whole genome shotgun bisulfite sequencing of wildtype Arabidopsis plants (Columbia-0), and met1, drm1 drm2 cmt3, and ros1 dml2 dml3 null mutants using the Illumina Genetic Analyzer.
Project description:This experiment contains the subset of data corresponding to rhesus macaque RNA-Seq data from experiment E-GEOD-30352 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-30352/), which goal is to understand the dynamics of mammalian transcriptome evolution. To study mammalian transcriptome evolution at high resolution, we generated RNA-Seq data (∼3.2 billion Illumina Genome Analyser IIx reads of 76 base pairs) for the polyadenylated RNA fraction of brain (cerebral cortex or whole brain without cerebellum), cerebellum, heart, kidney, liver and testis (usually from one male and one female per somatic tissue and two males for testis) from nine mammalian species: placental mammals (great apes, including humans; rhesus macaque; mouse), marsupials (gray short-tailed opossum) and monotremes (platypus). Corresponding data (∼0.3 billion reads) were generated for a bird (red jungle fowl, a non-domesticated chicken) and used as an evolutionary outgroup.
Project description:This experiment contains the subset of data corresponding to gray short-tailed opossum RNA-Seq data from experiment E-GEOD-30352 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-30352/), which goal is to understand the dynamics of mammalian transcriptome evolution. To study mammalian transcriptome evolution at high resolution, we generated RNA-Seq data (∼3.2 billion Illumina Genome Analyser IIx reads of 76 base pairs) for the polyadenylated RNA fraction of brain (cerebral cortex or whole brain without cerebellum), cerebellum, heart, kidney, liver and testis (usually from one male and one female per somatic tissue and two males for testis) from nine mammalian species: placental mammals (great apes, including humans; rhesus macaque; mouse), marsupials (gray short-tailed opossum) and monotremes (platypus). Corresponding data (∼0.3 billion reads) were generated for a bird (red jungle fowl, a non-domesticated chicken) and used as an evolutionary outgroup.
Project description:This experiment contains the subset of data corresponding to mouse RNA-Seq data from experiment E-GEOD-30352 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-30352/), which goal is to understand the dynamics of mammalian transcriptome evolution. To study mammalian transcriptome evolution at high resolution, we generated RNA-Seq data (∼3.2 billion Illumina Genome Analyser IIx reads of 76 base pairs) for the polyadenylated RNA fraction of brain (cerebral cortex or whole brain without cerebellum), cerebellum, heart, kidney, liver and testis (usually from one male and one female per somatic tissue and two males for testis) from nine mammalian species: placental mammals (great apes, including humans; rhesus macaque; mouse), marsupials (gray short-tailed opossum) and monotremes (platypus). Corresponding data (∼0.3 billion reads) were generated for a bird (red jungle fowl, a non-domesticated chicken) and used as an evolutionary outgroup.
Project description:This experiment contains the subset of data corresponding to human RNA-Seq data from experiment E-GEOD-30352 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-30352/), which goal is to understand the dynamics of mammalian transcriptome evolution. To study mammalian transcriptome evolution at high resolution, we generated RNA-Seq data (∼3.2 billion Illumina Genome Analyser IIx reads of 76 base pairs) for the polyadenylated RNA fraction of brain (cerebral cortex or whole brain without cerebellum), cerebellum, heart, kidney, liver and testis (usually from one male and one female per somatic tissue and two males for testis) from nine mammalian species: placental mammals (great apes, including humans; rhesus macaque; mouse), marsupials (gray short-tailed opossum) and monotremes (platypus). Corresponding data (∼0.3 billion reads) were generated for a bird (red jungle fowl, a non-domesticated chicken) and used as an evolutionary outgroup.