Project description:The morphogen Sonic H edgehog governs a wide range of developmental processes. The zebrafish genetic mutant iguana has vascular stability defects due to decreased Shh signaling. Using iguana mutant embryos and embryos treated with the Hedgehog pathway inhibitor cyclopamine, we conducted a microarray to determine genes that are specifically regulated by Shh signaling, and that might mediate vascular stability. We populate a list of 40 genes to have significantly altered expression in both conditions. Using in situ hybridization and quantitative real-time PCR, we verify the expression changes seen in a subset of genes from the list and determine their localization during embryonic development. We then assay the functional relevance of one of the array hits, the cell-cycle regulator pim1, which was upregulated on the microarray. By overexpressing pim1, we observe a loss of vascular stability, similar to that of iguana mutants. Furthermore, chemical inhibition of pim1 in iguana mutant embryos or cyclopamine treated embryos rescues vascular stability. We conclude that the microarray identified a set of genes that are differentially expressed in two distinct modes of Shh signaling interference. Furthermore, this set of genes contains a high proportion of factors potentially involved in vascular stabilization. The identification of these genes is the first step in defining the molecular mechanism by which Shh promotes vascular stability.
Project description:The morphogen Sonic H edgehog governs a wide range of developmental processes. The zebrafish genetic mutant iguana has vascular stability defects due to decreased Shh signaling. Using iguana mutant embryos and embryos treated with the Hedgehog pathway inhibitor cyclopamine, we conducted a microarray to determine genes that are specifically regulated by Shh signaling, and that might mediate vascular stability. We populate a list of 40 genes to have significantly altered expression in both conditions. Using in situ hybridization and quantitative real-time PCR, we verify the expression changes seen in a subset of genes from the list and determine their localization during embryonic development. We then assay the functional relevance of one of the array hits, the cell-cycle regulator pim1, which was upregulated on the microarray. By overexpressing pim1, we observe a loss of vascular stability, similar to that of iguana mutants. Furthermore, chemical inhibition of pim1 in iguana mutant embryos or cyclopamine treated embryos rescues vascular stability. We conclude that the microarray identified a set of genes that are differentially expressed in two distinct modes of Shh signaling interference. Furthermore, this set of genes contains a high proportion of factors potentially involved in vascular stabilization. The identification of these genes is the first step in defining the molecular mechanism by which Shh promotes vascular stability. 3 biological cyclopamine treated samples plus 3 biological DMSO treated controls, plus 3 biological replicates of iguana mutants plus 3 wild type sibling controls, all collected at 30 hpf
Project description:Thermal proteome profiling data for SW480 colon cancer cells treated with either the ALDH1B1 inhibitor IGUANA-1 or DMSO vehicle alone.
Project description:The populations of native iguanas in the Caribbean Lesser Antilles are threatened by the wide occurrence and spread of non-native iguanas. Until recently, competitive hybridization was not believed to threaten the Saba Green Iguana, a subpopulation of Iguana iguana (Linnaeus, 1758) from the island of Saba. However, the arrival of non-native iguanas has put the native population at risk, leading to a change in the conservation status of the Saba Green Iguana to Critically Endangered, according to guidelines from the International Union for the Conservation of Nature. Here, we generated the complete mitogenome of the Saba Green Iguana using Oxford Nanopore long-read technology. The mitogenome is 16,626 bp long and has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a control region (1194 bp). Noteworthy, this is only the second published mitogenome for the Iguana iguana species complex, despite the known high intraspecific genetic variation.
Project description:Electron microscopy analyses of Iguana iguana blood preparations revealed the presence of mitochondria within erythrocytes with well-structured cristae. Fluorescence microscopy analyses upon incubation with phalloidin-FITC, Hoechst 33342 and mitochondrial transmembrane potential (Δψm)-sensitive probe MitoTracker Red indicated that mitochondria i) widely occur in erythrocytes, ii) are polarized, and iii) seem to be preferentially confined at a "perinuclear" region, as confirmed by electron microscopy. The analysis of NADH-dependent oxygen consumption showed that red blood cells retain the capability to consume oxygen, thereby providing compelling evidence that mitochondria of Iguana erythrocytes are functional and capable to perform oxidative phosphorylation.
Project description:The complete mitochondrial genomes of two reptiles, the common iguana (Iguana iguana) and the caiman (Caiman crocodylus), were sequenced in order to investigate phylogenetic questions of tetrapod evolution. The addition of the two species allows analysis of reptilian relationships using data sets other than those including only fast-evolving species. The crocodilian mitochondrial genomes seem to have evolved generally at a higher rate than those of other vertebrates. Phylogenetic analyses of 2889 amino-acid sites from 35 mitochondrial genomes supported the bird-crocodile relationship, lending no support to the Haematotherma hypothesis (with birds and mammals representing sister groups). The analyses corroborated the view that turtles are at the base of the bird-crocodile branch. This position of the turtles makes Diapsida paraphyletic. The origin of the squamates was estimated at 294 million years (Myr) ago and that of the turtles at 278 Myr ago. Phylogenetic analysis of mammalian relationships using the additional outgroups corroborated the Marsupionta hypothesis, which joins the monotremes and the marsupials to the exclusion of the eutherians.