Project description:Comparison of gene expression between the virulent Rickettsia rickettsii R strain and avirulent Rickettsia rickettsii Iowa. Keywords: virulent vs avirulent
Project description:Comparison of gene expression between the virulent Rickettsia rickettsii R strain and avirulent Rickettsia rickettsii Iowa. Keywords: virulent vs avirulent Virulent Rickettsia rickettsii R strain in triplicate was compared to avirulent Rickettsia rickettsii Iowa in triplicate
Project description:Rickettsiae are strict obligate intracellular pathogens that alternate between arthropod and mammalian hosts in a zoonotic cycle. Typically, pathogenic bacteria that cycle between environmental sources and mammalian hosts adapt to the respective environments by coordinately regulating gene expression such that genes essential for survival and virulence are expressed only upon infection of mammals. Temperature is a common environmental signal for upregulation of virulence gene expression although other factors may also play a role. We examined the transcriptional responses of Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, to a variety of environmental signals expected to be encountered during its life cycle. R. rickettsii exposed to differences in growth temperature (25o C vs. 37o C), iron limitation, and host cell species displayed nominal changes in gene expression under any of these conditions with only 0, 5, or 7 genes, respectively, changing more than 3-fold in expression levels. R. rickettsii is not totally devoid of ability to respond to temperature shifts as cold shock (37o C vs. 4o C) induced a change greater than 3-fold in up to 57 genes. Rickettsiae continuously occupy a relatively stable environment which is the cytosol of eukaryotic cells. Because of their obligate intracellular character, rickettsiae are believed to be undergoing reductive evolution to a minimal genome. We propose that their relatively constant environmental niche has led to a minimal requirement for R. rickettsii to respond to environmental changes with a consequent deletion of non-essential transcriptional response regulators. A minimal number of transcriptional regulators in the R. rickettsii genome is consistent with this hypothesis.
Project description:Rickettsiae are strict obligate intracellular pathogens that alternate between arthropod and mammalian hosts in a zoonotic cycle. Typically, pathogenic bacteria that cycle between environmental sources and mammalian hosts adapt to the respective environments by coordinately regulating gene expression such that genes essential for survival and virulence are expressed only upon infection of mammals. Temperature is a common environmental signal for upregulation of virulence gene expression although other factors may also play a role. We examined the transcriptional responses of Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, to a variety of environmental signals expected to be encountered during its life cycle. R. rickettsii exposed to differences in growth temperature (25o C vs. 37o C), iron limitation, and host cell species displayed nominal changes in gene expression under any of these conditions with only 0, 5, or 7 genes, respectively, changing more than 3-fold in expression levels. R. rickettsii is not totally devoid of ability to respond to temperature shifts as cold shock (37o C vs. 4o C) induced a change greater than 3-fold in up to 57 genes. Rickettsiae continuously occupy a relatively stable environment which is the cytosol of eukaryotic cells. Because of their obligate intracellular character, rickettsiae are believed to be undergoing reductive evolution to a minimal genome. We propose that their relatively constant environmental niche has led to a minimal requirement for R. rickettsii to respond to environmental changes with a consequent deletion of non-essential transcriptional response regulators. A minimal number of transcriptional regulators in the R. rickettsii genome is consistent with this hypothesis. various growth and environmental condition comparisons
Project description:The recently described rickettsial protein, RoaM, (Regulator of Actin-based Motility), negatively regulates the production of actin tails and its abrogation induces hyper-spreading behavior in many laboratory-adapted strains of Rickettsia rickettsii. RoaM is not surface exposed thus its mechanism of regulating actin-based motility is unclear. Using R. rickettsii strains derived from the virulent Sheila Smith strain that express varying levels of roaM, an RNA-seq experiment was performed. We found that roaM-overexpressing strains downregulate expression of at least six genes which may link the regulatory effects of RoaM to the phenotypic effect on motility. Genes regulated by RoaM were confirmed by RT-qPCR. Among the genes regulated is the secreted effector RarP2 which disrupts the trans-Golgi network. Two of the hypothetical proteins were shown to be secreted via fusion to a glycogen synthase kinase tag, which when phosphorylated reveals exposure to the host-cell cytosol. Taken together, these data support the hypothesis that RoaM affects transcription, downregulating rickettsial genes important for pathogenicity in the mammalian host but which are perhaps otherwise detrimental within the tick vector. To determine how RoaM activity may itself be regulated, we investigated a role of temperature in roaM transcription. RoaM expression itself is not temperature dependent but many other rickettsial genes are, including some also regulated by RoaM. This suggests that rickettsiae utilize multiple mechanisms to control gene expression in response to environmental signals.
Project description:Members of the spotted fever group rickettsia express four large, surface-exposed autotransporters, at least one of which is a known virulence determinant. Autotransporter translocation to the bacterial outer surface, also known as type V secretion, involves formation of a b-barrel autotransporter domain in the periplasm that inserts into the outer membrane to form a pore through which the N-terminal passenger domain is passed and exposed on the outer surface. Two major surface antigens of Rickettsia rickettsii, are known to be exposed and the passenger domain cleaved from the autotransporter domain. A highly passaged strain of R. rickettsii, Iowa, fails to cleave these autotransporters and is avirulent. We have identified a putative peptidase, truncated in the Iowa strain, that when reconstituted into Iowa restores appropriate processing of the autotransporters as well as restoring a modest degree of virulence.