Project description:There are a total of four samples each for this analysis. Each sample consists of the cells grown on three 10 cm culture plates. Each plate should have 2x106 cells for a total of 6x106 cells per sample when all three plates are combined. The first sample is undifferentiated human embryonic stem cells, the second sample is human glutamatergic neurons derived from those human embryonic stem cells, the third sample is undifferentiated human induced pluripotent stem cells and the fourth sample is human glutamatergic neurons derived from those human induced pluripotent stem cells.
Project description:Reprogramming of somatic cells into induced pluripotent stem cells (iPSC) is an epigenetic phenomenon. It has been suggested that iPSC retain some tissue-specific memory whereas little is known about inter-individual epigenetic variation of iPSC clones. In this study we have reprogrammed mesenchymal stromal cells (MSC) from human bone marrow by retrovirus-mediated overexpression of OCT-3/4, SOX2, c-MYC, and KLF4. Global DNA-methylation profiles of the initial MSC, MSC-derived iPSC (iP-MSC) and embryonic stem cells (ESC) were then compared using a high density DNA-methylation array covering more than 450,000 CpG sites. Overall, DNA-methylation patterns of iP-MSC and ESC were similar whereas some CpG sites revealed highly significant differences, which were not related to parental MSC. Furthermore, hypermethylation in iP-MSC versus ESC was particularly enriched in developmental genes as well as shore regions next to CpG islands indicating that these differences are not due to tissue-specific memory or random de novo methylation. Subsequently, we searched for CpG sites with donor-specific variation in MSC preparations. These “epigenetic fingerprints” were highly enriched in non-promoter regions and outside of CpG islands – and they were maintained upon reprogramming into iP-MSC. In conclusion, DNA methylation profiles of iP-MSC clones from the same donor were closely related despite heterogeneity of MSC. On the other hand, iP-MSC maintain donor-derived epigenetic differences. In the absence of isogenic controls for disease modeling applications, it would therefore be more appropriate to compare iPSC from different donors rather than a high number of different clones from the same patient. 16 samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:Transcriptional analysis was performed on pre and post excision human induced pluripotent stem cells, the donor human dermal fibroblasts (HDFs) they were derived from and control human embryonic stem cells We isolated total RNA from pre and post excision human induced pluripotent stem cells, the donor human dermal fibroblasts (HDFs) they were derived from and control human embryonic stem cells and analyzed via Affymetrix microarray analysis.
Project description:We report a method for specific capture of an arbitrary subset of genomic targets for single molecule bisulfite sequencing, and for digital quantitation of DNA methylation at a single nucleotide resolution. We used targeted bisulfite sequencing to characterize the changes of DNA methylation during the de-differentiation of human fibroblasts into hybrid stem cells, and into induced pluripotent stem cells. We compared the methylation level of approximately 66,000 CpG sites within 2020 CpG islands on chromosome 12, chromosome 20, and 34 selected regions. A total of 288 differentially methylated regions were identified between fibroblasts and pluripotent cells. Methylation cluster analysis revealed distinct methylation patterns between fibroblasts and pluripotent cells. Furthermore iPS cells are globally more methylated than human embryonic stem cells, which could be due to the reprogramming process. This targeted bisulfite sequencing method is particularly useful for efficient and large-scale analysis of DNA methylation in organisms with large genomes. Experiment Overall Design: Comparison of DNA methylation on 2020 CpG islands and 34 other selected regions among eleven human ES, iPS and fibroblast lines.
Project description:Chavez2009 - a core regulatory network of OCT4 in human embryonic stem cells
A core OCT4-regulated network has been identified as a test case, to analyase stem cell characteristics and cellular differentiation.
This model is described in the article:
In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach.
Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R
BMC Genomics, 2009, 10:314
Abstract:
BACKGROUND: The transcription factor OCT4 is highly expressed in pluripotent embryonic stem cells which are derived from the inner cell mass of mammalian blastocysts. Pluripotency and self renewal are controlled by a transcription regulatory network governed by the transcription factors OCT4, SOX2 and NANOG. Recent studies on reprogramming somatic cells to induced pluripotent stem cells highlight OCT4 as a key regulator of pluripotency.
RESULTS: We have carried out an integrated analysis of high-throughput data (ChIP-on-chip and RNAi experiments along with promoter sequence analysis of putative target genes) and identified a core OCT4 regulatory network in human embryonic stem cells consisting of 33 target genes. Enrichment analysis with these target genes revealed that this integrative analysis increases the functional information content by factors of 1.3 - 4.7 compared to the individual studies. In order to identify potential regulatory co-factors of OCT4, we performed a de novo motif analysis. In addition to known validated OCT4 motifs we obtained binding sites similar to motifs recognized by further regulators of pluripotency and development; e.g. the heterodimer of the transcription factors C-MYC and MAX, a prerequisite for C-MYC transcriptional activity that leads to cell growth and proliferation.
CONCLUSION: Our analysis shows how heterogeneous functional information can be integrated in order to reconstruct gene regulatory networks. As a test case we identified a core OCT4-regulated network that is important for the analysis of stem cell characteristics and cellular differentiation. Functional information is largely enriched using different experimental results. The de novo motif discovery identified well-known regulators closely connected to the OCT4 network as well as potential new regulators of pluripotency and differentiation. These results provide the basis for further targeted functional studies.
This model is hosted on BioModels Database
and identified
by: MODEL1305010000
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:Reprogramming of somatic cells into induced pluripotent stem cells (iPSC) is an epigenetic phenomenon. It has been suggested that iPSC retain some tissue-specific memory whereas little is known about inter-individual epigenetic variation of iPSC clones. In this study we have reprogrammed mesenchymal stromal cells (MSC) from human bone marrow by retrovirus-mediated overexpression of OCT-3/4, SOX2, c-MYC, and KLF4. Global DNA-methylation profiles of the initial MSC, MSC-derived iPSC (iP-MSC) and embryonic stem cells (ESC) were then compared using a high density DNA-methylation array covering more than 450,000 CpG sites. Overall, DNA-methylation patterns of iP-MSC and ESC were similar whereas some CpG sites revealed highly significant differences, which were not related to parental MSC. Furthermore, hypermethylation in iP-MSC versus ESC was particularly enriched in developmental genes as well as shore regions next to CpG islands indicating that these differences are not due to tissue-specific memory or random de novo methylation. Subsequently, we searched for CpG sites with donor-specific variation in MSC preparations. These “epigenetic fingerprints” were highly enriched in non-promoter regions and outside of CpG islands – and they were maintained upon reprogramming into iP-MSC. In conclusion, DNA methylation profiles of iP-MSC clones from the same donor were closely related despite heterogeneity of MSC. On the other hand, iP-MSC maintain donor-derived epigenetic differences. In the absence of isogenic controls for disease modeling applications, it would therefore be more appropriate to compare iPSC from different donors rather than a high number of different clones from the same patient.