Project description:Purpose: Irinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown. Methods: We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38- or oxaliplatin-resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of DNA methylation entropy to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. Results: We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences -- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples. Our findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy. Investigation of the representive methylome of well-established SN38 and Oxaliplatin resistant cell line models and 14 clinical colorectal metastatic samples that have developed resistance to XELOX to review the epigenetic mechnism of the drug resistance.
Project description:Purpose: Irinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown. Methods: We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38- or oxaliplatin-resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of DNA methylation entropy to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. Results: We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences -- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples. Our findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy.
Project description:Oxaliplatin resistance was induced in 2 colorectal cancer cell lines (LoVo-92, wt-p53 and LoVo-Li, functionally inactive p53) and one ovarian cancer cell line (A2780, wt-p53). Resistance was induced by weekly exposure to oxaliplatin for 4 hrs or 72 hrs with increasing concentrations for a period of 7 months Genomic DNA of oxaliplatin and cisplatin resistant colorectal cancer and ovarian cancer cell lines as well as the parental cell lines were labeled and subsequently hybridized against pooled reference DNA of healthy volunteers of the opposite gender using across array hybridization. Extracted raw-data were normalised and smoothend using the R-script NOWAVE resulting in normalised log2 ratio profiles of resistant cell line versus parental cell line and parental cell line versus reference DNA.
Project description:Multiple DNA methylation changes have been associated with the acquisition of drug resistance; however it remains uncertain how many of these changes may represent critical DNA methylation drivers of chemoresistance. Using genome-wide DNA methylation profiling across 27,578 CpG sites on Illumina HumanMethylation27 bead array we identified loci at 4092 genes becoming hypermethylated in the chemoresistant A2780/cp70 ovarian tumour cell line compared to the parental sensitive A2780 line. Hypermethylation at CpG islands (CGI) is often associated with transcriptional silencing, however only 245 of these hypermethylated genes become down-regulated in A2780/cp70 as measured by microarray expression profiling. Treatment with the demethylating agent Decitabine induces re-sensitisation to cisplatin and resulted in re-expression of 41 of the down-regulated genes in cisplatin-resistant cells at the time point when re-sensitisation occurs. 13 of the 41 genes were consistently hypermethylated in two further independent cisplatin-resistant A2780 cell derivatives. Nine out of the 13 genes (ARHGDIB, ARMCX2, COL1A, FLNA, FLNC, MEST, MLH1, NTS, PSMB9) acquired methylation at CpG sites in ovarian tumours at relapse following chemotherapy or chemoresistant cell lines derived at the time of patient relapse. Furthermore, 5/13 candidate genes acquired methylation in drug-resistant in vivo-derived ovarian cancer sustaining (side population) cells. Therefore, this small set of genes are potential key drivers of chemoresistance and should be further evaluated as predictive biomarkers, both to existing chemotherapies, but also to epigenetic therapies used to modulate drug resistance. Array-based methylation profiling was performed using the Infinium HumanMethylation27 BeadChip in two cisplatin sensitive cell lines and three cisplatin resistant cell lines derived in vitro, four pairs of cisplatin sensitive and resistant cell lines derived in vivo, 7 pairs of tumour tissues obtained from patients before chemotherapy and at disease relapse, 2 pairs of IGROV1 SP and NSP cells. The reproducibility of the Infinium HumanMethylation27 BeadChips was evaluated using biological and technical replicates of matched chemosensitive/chemoresistant ovarian cancer cell lines PEO1/PEO4. Differential methylation cutoff was estimated from two biological replicates by bootstrap resampling.
Project description:Chemotherapy (CT) resistance in ovarian cancer is broad and encompasses diverse, unrelated drugs, suggesting more than one mechanism of resistance. We aimed to analyze the gene expression patterns in primary serous epithelial ovarian cancer (EOC) samples displaying different responses to first-line CT in an attempt to identify specific molecular signatures associated with response to CT. Initially, the expression profiles of 15 chemoresistant serous EOC tumors [time to recurrence (TTR) ≤6 months] and 10 chemosensitive serous EOC tumors (TTR ≥30 months) were independently analyzed which allowed the identification of specific sets of differentially expressed genes that might be functionally implicated in the evolution of the chemoresistant or the chemosensitive phenotype. Our data suggest that the intrinsic chemoresistance in serous EOC cells may be attributed to the combined action of different molecular mechanisms and factors linked with drug influx and efflux and cell proliferation, as possible implications of other molecular events including altered metabolism, apoptosis and inflammation cannot be excluded. Next, gene expression comparison using hierarchical clustering clearly distinguished chemosensitive and chemo- resistant tumors from the 25 serous EOC samples (training set), and consecutive class prediction analysis was used to develop a 43-gene classifier that was further validated in an independent cohort of 15 serous EOC patients and 2 patients with other ovarian cancer histotypes (test set). The 43-gene predictor set properly classified serous EOC patients at high risk for early (≤22 months) versus late (>22 months) relapse after initial CT. Thus, gene expression array technology can effectively classify serous EOC tumors according to CT response. The proposed 43-gene model needs further validation. 2 condition experiment: chemoresistant clinical samples versus chemosensitive samples
Project description:Background: Successful treatment of oesophageal cancer is hampered by recurrent drug resistant disease. We have previously demonstrated the importance of apoptosis and autophagy for the recovery of oesophageal cancer cells following drug treatment. When apoptosis (with autophagy) is induced, these cells are chemosensitive and will not recover following chemotherapy treatment. In contrast, when cancer cells exhibit only autophagy and limited Type II cell death, they are chemoresistant and recover following drug withdrawal. Methods: MicroRNA (miRNA) expression profiling of an oesophageal cancer cell line panel was used to identify miRNAs that were important in the regulation of apoptosis and autophagy. The effects of miRNA overexpression on cell death mechanisms and recovery were assessed in the chemoresistant (autophagy inducing) KYSE450 oesophageal cancer cells. Results: MiR-193b was the most differentially expressed miRNA between the chemosensitive and chemoresistant cell lines with higher expression in chemosensitive apoptosis inducing cell lines. Colony formation assays showed that overexpression of miR-193b significantly impedes the ability of KYSE450 cells to recover following 5-fluorouracil (5-FU) treatment. The critical mRNA targets of miR-193b are unknown but target prediction and siRNA data analysis suggest that it may mediate some of its effects through stathmin 1 regulation. Apoptosis was not involved in the enhanced cytotoxicity. Overexpression of miR- 193b in these cells induced autophagic flux and non-apoptotic cell death. Conclusion: These results highlight the importance of miR-193b in determining oesophageal cancer cell viability and demonstrate an enhancement of chemotoxicity that is independent of apoptosis induction.
Project description:Genome wide DNA methylation profiling of LoVo oxaliplatin sensitive (LoVo_S) and LoVo 10 fold oxaliplatin resistant (LoVo_R) cell lines. The Illumina Infinium 27k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across approximately 27,000 CpGs in cell lines genomic DNA samples.
Project description:Oxaliplatin as a first-line drug frequently causes the chemo-resistance on colorectal cancer (CRC). N6-methyladenosine (m6A) methylation has been largely acknowledged in multiple biological functions. However, the molecular mechanisms underlying the m6A methylation in modulating anticancer drug resistance in CRC are still obscure. In present study, RNA-seq was conducted to investigate the transcriptome of HCT116, HCT116 cells with oxaliplatin resistance (HCT116R), HCT8 and HCT8 cells with oxaliplatin resistance (HCT8R).
Project description:Genome wide DNA methylation profiling of LoVo oxaliplatin sensitive (LoVo_S) and LoVo 10 fold oxaliplatin resistant (LoVo_R) cell lines. The Illumina Infinium 27k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across approximately 27,000 CpGs in cell lines genomic DNA samples. Bisulphite converted DNA from the LoVo_S and LoVo_R samples were hybridised to the Illumina Infinium 27k Human Methylation Beadchip v1.2
Project description:Oxaliplatin as a first-line drug frequently causes the chemo-resistance on colorectal cancer (CRC). N6-methyladenosine (m6A) methylation has been largely acknowledged in multiple biological functions. However, the molecular mechanisms underlying the m6A methylation in modulating anticancer drug resistance in CRC are still obscure. In present study, RIP-seq was conducted to investigate the occupancy of N6-methyladenosine RNA binding protein 3 (YTHDF3) served as “readers” that can recognize m6A modification site in HCT116 cells with oxaliplatin resistance (HCT116R). Then, YTHDF3 was knockdown by siRNA in HCT116 cells with oxaliplatin resistance, and RIP-seq was further conducted to investigate m6A methylation of HCT116, HCT116R and HCT116R cells with YTHDF3 knockdown.