Project description:Characterization of the transcriptomic responses of grafted tomato seedlings leaves after the root inoculations with the two beneficial microorganisms Paraburkholderia graminis and Azospirillum brasiliensis. Paraburkholderia graminis treatment led to a higher number of differentially expressed genes than Azospirillum brasiliensis, with a higher amount of up-regulated than down-regulated genes for both treatments. These DEGs were manly involved in response to oxidative stress, response to biotic and abiotic stress, water transport, regulation of transcription and hormones. Only few DEGs were shared among the two treatments, including genes involved in flowering time and in tolerance against abiotic stresses.
Project description:Puccinia graminis f.sp. tritici (Pgt), the causal agent of stem rust disease in wheat, is one of the most destructive pathogens and can cause severe yield losses. Here, we utilize Hi-C sequencing technology to scaffold and phase the haplotypes for the genome assembly of a US Pgt isolate 99KS76A-1.
Project description:Puccinia graminis f. sp. tritici is the cause of wheat stem rust. A microarray was designed from genes predicted from the P. graminis f. sp. tritici genome assembly, and gene expression measured for four conditions which include wheat or barley infecting growth stages initiated by urediniospores. mRNA was prepared from fresh urediniospores, uredinospores germinated for 24 hr, wheat seedlings infected with urediniospores for 8 days, and barley seedlings infected with urediniospores for 8 days. The asexual uredinial infection cycle on wheat produces additional urediniospores, which can start new cycles of wheat infection and are readily spread by aerial transport. This expression data is further described in Duplessis et al, Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici