Project description:We investigated the DNA methylation and gene expression of 20 chorionic villi samples from early onset preeclampsia placentas to 20 gestational age matched controls. From this we were able to see a widespread disregulation in DNA methylation across a subset of genes in the genome. This may help to elucidate the underlying biological problems that lead to early onset preeclampsia. We noted that there were DNA methylation changes in many genes of importance as well as in different genomic elements such as enhancers. Bisulfite converted DNA from 20 third trimester early onset preeclampsia placentas and 20 gestational age matched controls
Project description:We investigated the DNA methylation and gene expression of 20 chorionic villi samples from early onset preeclampsia placentas to 20 gestational age matched controls. From this we were able to see a widespread disregulation in DNA methylation across a subset of genes in the genome. This may help to elucidate the underlying biological problems that lead to early onset preeclampsia. We noted that there were DNA methylation changes in many genes of importance as well as in different genomic elements such as enhancers. RNA from 8 Early Onset Preeclampsia placentas and 8 gestational age matched controls
Project description:Preeclampsia is a severe placenta-related pregnancy disorder that is generally divided into two subtypes named early-onset preeclampsia (onset <34 weeks of gestation), and lateonset preeclampsia (onset ≥34 weeks of gestation), with distinct pathophysiological origins. Both forms of preeclampsia have been associated with maternal systemic inflammation. However, alterations in the placental immune system have been less well characterized. Here, we studied immunological alterations in early- and late-onset preeclampsia placentas using a targeted expression profile approach. RNA was extracted from snap-frozen placenta samples (healthy n=13, early-onset preeclampsia n=13, and late-onset preeclampsia n=6). The expression of 730 immune-related genes from the Pan Cancer Immune Profiling Panel was measured, and the data were analyzed Q10 in the advanced analysis module of nSolver software (NanoString Technology). The results showed that early-onset preeclampsia placentas displayed reduced expression of complement, and toll-like receptor (TLR) associated genes, specifically TLR1 and TLR4. Mast cells and M2 macrophages were also decreased in early-onset preeclampsia compared to healthy pl acentas. The findings were confirmed by an immunohistochemistry approach using 20 healthy, 19 early-onset preeclampsia, and 10 late-onset preeclampsia placentas. We conclude that the placental innate immune system is altered in early-onset preeclampsia compared to uncomplicated pregnancies. The absence of these alterations in late-onset preeclampsia placentas indicates dissimilar immunological profiles. The study revealed distinct pathophysiological processes in earlyonset and late-onset preeclampsia placentas and imply that a tailored treatment to each subtype is desirable.
Project description:We investigated the DNA methylation and gene expression of 20 chorionic villi samples from early onset preeclampsia placentas to 20 gestational age matched controls. From this we were able to see a widespread disregulation in DNA methylation across a subset of genes in the genome. This may help to elucidate the underlying biological problems that lead to early onset preeclampsia. We noted that there were DNA methylation changes in many genes of importance as well as in different genomic elements such as enhancers.
Project description:We investigated the DNA methylation and gene expression of 20 chorionic villi samples from early onset preeclampsia placentas to 20 gestational age matched controls. From this we were able to see a widespread disregulation in DNA methylation across a subset of genes in the genome. This may help to elucidate the underlying biological problems that lead to early onset preeclampsia. We noted that there were DNA methylation changes in many genes of importance as well as in different genomic elements such as enhancers.
Project description:To investigate the differentially expressed mRNAs and microRNAs in human placenta between early-onset preeclampsia (EO-PE) and preterm birth controls (PTB), next generation sequencing was performed in 5 paired EO-PE and PTB placentas.
Project description:Background: Early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE) has been regarded as two different phenotypes with heterogeneous manifestation. The underlying mechanisms remain elusive. Aim to gain insight into the pathogenesis of the two traits, we analyzed the placental gene expression profiles in preeclampsia placentas. Methods: Whole genome-wide microarray was used to describe the gene expression profiles in the placenta tissues from patients with early-(n=7; <34 weeks), late-onset(n=8; >36 weeks) PE and their controls who delivered preterm (n=5;<34 weeks) or at term(n=5; >36 weeks) Genes were selected as differentially expressed upon a fold-changeâ?¥2 and q-value<0.05. qRT-PCR was undertaken to verify the results. Western blot was further performed to verify secreted genes at the protein level. Results: A total of 627 genes were differentially expressed in early-compared with late-onset PE. Of these, 177 genes were up-regulated and 450 genes down-regulated in early-onset PE. Go analysis showed significant alteration in several biological processes, in addition to the processes which have been found before, such as immune and inflammatory response, cell adhension, female pregnancy and blood vessel development. We also found alteration in G-protein coupled receptor protein signaling pathway, G protein-coupled receptor 124 (GPR124) (P=0.0064) and MAS-related GPR, member F (MRGPRF)(P=0.0155 ) were both down-regulated obviously in early-onset PE. Conclusion: The different gene expression profiles suggested early- and late-onset PE are separate disease entities. Moreover, G-protein coupled receptor protein signaling pathway may contribute to the mechanism underlying early- and late-onset preeclampsia. Whole genome-wide microarray was used to describe the gene expression profiles in the placenta tissues from patients with early-(n=7; <34 weeks), late-onset (n=8; >36 weeks) PE and their controls who delivered preterm(n=5;<34 weeks) or at term(n=5; >36 weeks). Pooled controls who delivered at term were labled with cy5.