Project description:Background & Aims: The influences of the maternal diet during gestation has been suggested to be involved in the development of different aspects of the metabolic syndrome. In our mouse model we characterised the role of maternal western diet in the development of non-alcoholic fatty liver disease (NAFLD) in the offspring. Methods: Female mice were fed either a western (W) or low-fat control (L) semi-synthetic diet before and during gestation and lactation. At weaning, male offspring were assigned either the W or the L diet, generating four experimental groups: WW, WL, LW and LL offspring. Biochemical, histological and epigenetic indicators were investigated at 29 weeks of age. Results: Male offspring exposed to prenatal western style diet and to a post-weaning W diet (WW) showed hepatomegaly combined with increased hepatic cholesterol and triglycerides accumulation, compared to LW offspring. This was associated with up-regulation of de novo lipid synthesis and dysregulation of beta oxidation and lipid storage. Elevated hepatic transaminases and increased expression of Tnfa, Cd11, Mcp1 and Tgfb underpin the severity of liver injury. Histological analysis supported the presence of steatohepatitis in the WW offspring. In addition alterations in DNA methylation in key metabolic genes (Ppara, Insig, Fasn) were detected. Conclusion: Maternal dietary fat intake during critical developmental phases programs susceptibility to liver disease in mouse offspring. This was mediated by shifts in lipid metabolism and inflammatory response. Long lasting epigenetic changes may underlie this dysregulation 4 groups of 6 male mouse were analysed , 1 experimental and 1 biological outlier was excluded , so n=6,5,5,6 in the 4 groups (LL,LW,WL,WW)
Project description:Background & Aims: The influences of the maternal diet during gestation has been suggested to be involved in the development of different aspects of the metabolic syndrome. In our mouse model we characterised the role of maternal western diet in the development of non-alcoholic fatty liver disease (NAFLD) in the offspring. Methods: Female mice were fed either a western (W) or low-fat control (L) semi-synthetic diet before and during gestation and lactation. At weaning, male offspring were assigned either the W or the L diet, generating four experimental groups: WW, WL, LW and LL offspring. Biochemical, histological and epigenetic indicators were investigated at 29 weeks of age. Results: Male offspring exposed to prenatal western style diet and to a post-weaning W diet (WW) showed hepatomegaly combined with increased hepatic cholesterol and triglycerides accumulation, compared to LW offspring. This was associated with up-regulation of de novo lipid synthesis and dysregulation of beta oxidation and lipid storage. Elevated hepatic transaminases and increased expression of Tnfa, Cd11, Mcp1 and Tgfb underpin the severity of liver injury. Histological analysis supported the presence of steatohepatitis in the WW offspring. In addition alterations in DNA methylation in key metabolic genes (Ppara, Insig, Fasn) were detected. Conclusion: Maternal dietary fat intake during critical developmental phases programs susceptibility to liver disease in mouse offspring. This was mediated by shifts in lipid metabolism and inflammatory response. Long lasting epigenetic changes may underlie this dysregulation
Project description:Early-life exposure to high-fat diet (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic and cognitive parameters in young adult offspring mice. To identify early-programming mechanisms in hippocampus, we developed a multi-omics strategy in male and female offspring. Maternal HF induced a transient increased body weight at weaning, a mild glucose intolerance only in 3-month-old male mice with no change in plasma metabolic parameters in adult male and female offspring. Behavioral alterations revealed by Barnes maze test were observed both in 6-month-old male and female mice. Multi-omics strategy unveiled sex-specific transcriptomic and proteomic modifications in the hippocampus of adult offspring. These studies, that were confirmed by regulon analysis, showing that, although genes whose expression was modified by maternal HF were different between sexes, the main pathways affected were similar with mitochondria and synapses as main hippocampal targets of maternal HF. The effects of maternal HF reported here may help to better characterize sex-dependent molecular pathways involved in cognitive disorders and neurodegenerative diseases.
Project description:Maternal diet is associated with the development of metabolism-related and other non-communicable diseases in offspring. Underlying mechanisms, functional profiles, and molecular markers are only starting to be revealed. Here, we explored the physiological and molecular impact of maternal Western-style diet on the liver of male and female offspring. C57BL/6 dams were exposed to either a low fat/low cholesterol diet (LFD) or a Western-style high fat/high cholesterol diet (WSD) for six weeks before mating, as well as during gestation and lactation. Dams and offspring were sacrificed at postnatal day 14, and body, liver, and blood parameters were assessed. The impact of maternal WSD on the pups' liver gene expression was characterised by whole-transcriptome microarray analysis. Exclusively male offspring had significantly higher body weight upon maternal WSD. In offspring of both sexes of WSD dams, liver and blood parameters, as well as hepatic gene expression profiles were changed. In total, 686 and 604 genes were differentially expressed in liver (pM-bM-^IM-$0.01) of males and females, respectively. Only 10% of these significantly changed genes overlapped in both sexes. In males, in particular alterations of gene expression with respect to developmental functions and processes were observed, such as Wnt/beta-catenin signalling. In females, mainly genes important for lipid metabolism, including cholesterol synthesis, were changed. We conclude that maternal WSD affects physiological parameters and induces substantial changes in the molecular profile of the liver in two-week-old pups. Remarkably, the observed biological responses of the offspring reveal pronounced sex-specificity. C57BL/6 dams were exposed to either a low fat/low cholesterol diet (LFD) or a Western-style high fat/high cholesterol diet (WSD) as six weeks pre-treatment before mating, as well as during gestation and lactation. Offspring were sacrificed at postnatal week two, livers were removed and RNA samples were subjected to gene expression profiling.
Project description:Maternal nutrition during embryonic development and lactation influences multiple aspects of offspring health. Using mice, this study investigates the effects of maternal caloric restriction (CR) during mid-gestation and lactation on offspring neonatal development and on adult metabolic function when challenged by a high fat diet (HFD). The CR maternal model produced male and female offspring that were significantly smaller, in terms of weight and length, and females had delayed puberty. Adult offspring born to CR dams had a sexually dimorphic response to the high fat diet. Compared to offspring of maternal control dams, adult female, but not male, CR offspring gained more weight in response to high fat diet at 10 weeks. In adipose tissue of male HFD offspring, maternal undernutrition resulted in blunted expression of genes associated with weight gain and increased expression of genes that protect against weight gain. Regardless of maternal nutrition status, HFD male offspring showed increased expression of genes associated with nonalcoholic liver disease (NAFLD). Furthermore, we observed significant, sexually dimorphic differences in serum TSH. These data reveal tissue- and sex-specific changes in gene and hormone regulation following mild maternal undernutrition, which may offer protection against diet induced weight gain in adult male offspring.
Project description:Maternal diet is associated with the development of metabolism-related and other non-communicable diseases in offspring. Underlying mechanisms, functional profiles, and molecular markers are only starting to be revealed. Here, we explored the physiological and molecular impact of maternal Western-style diet on the liver of male and female offspring. C57BL/6 dams were exposed to either a low fat/low cholesterol diet (LFD) or a Western-style high fat/high cholesterol diet (WSD) for six weeks before mating, as well as during gestation and lactation. Dams and offspring were sacrificed at postnatal day 14, and body, liver, and blood parameters were assessed. The impact of maternal WSD on the pups' liver gene expression was characterised by whole-transcriptome microarray analysis. Exclusively male offspring had significantly higher body weight upon maternal WSD. In offspring of both sexes of WSD dams, liver and blood parameters, as well as hepatic gene expression profiles were changed. In total, 686 and 604 genes were differentially expressed in liver (p≤0.01) of males and females, respectively. Only 10% of these significantly changed genes overlapped in both sexes. In males, in particular alterations of gene expression with respect to developmental functions and processes were observed, such as Wnt/beta-catenin signalling. In females, mainly genes important for lipid metabolism, including cholesterol synthesis, were changed. We conclude that maternal WSD affects physiological parameters and induces substantial changes in the molecular profile of the liver in two-week-old pups. Remarkably, the observed biological responses of the offspring reveal pronounced sex-specificity.
Project description:Analysis of glucose and Lipid metabolism in male and female offspring after protein restriction of the mother Male offspring showed features of metabolic syndrome after receiving a high fat diet, regardless of the diet of the dam. Glucose and lipid metabolism in male offspring was unaltered. Insulin sensitivity and hepatic fatty acid storage in female offspring of low-protein-fed dams changed in such a way that it resembled the male pattern of insulin sensitivity and hepatic fatty acid storage. Microarray analysis on hepatic gene expression patterns confirmed these findings. We therefore conclude that in mice, maternal protein restriction does not change the response of glucose and fatty acid metabolism to a high fat diet in male offspring, but does program metabolism in female offspring in such a way that it resembles male metabolism. Our findings might have implications for potential future gender-specific treatment of the features of metabolic diseases.
Project description:Analysis of glucose and Lipid metabolism in male and female offspring after protein restriction of the mother Male offspring showed features of metabolic syndrome after receiving a high fat diet, regardless of the diet of the dam. Glucose and lipid metabolism in male offspring was unaltered. Insulin sensitivity and hepatic fatty acid storage in female offspring of low-protein-fed dams changed in such a way that it resembled the male pattern of insulin sensitivity and hepatic fatty acid storage. Microarray analysis on hepatic gene expression patterns confirmed these findings. We therefore conclude that in mice, maternal protein restriction does not change the response of glucose and fatty acid metabolism to a high fat diet in male offspring, but does program metabolism in female offspring in such a way that it resembles male metabolism. Our findings might have implications for potential future gender-specific treatment of the features of metabolic diseases. Total RNA obtained from liver (16 samples per gender) were compared in the different groups. In total, 4 groups per gender, each group consisting of 4 biological replicates.
Project description:Background: Epidemiological studies suggest an association between maternal obesity and adverse neurodevelopmental outcomes in offspring. Objective: To compare the global proteomic portrait in the cerebral cortex between mice born to mothers on a high-fat or control diet who themselves were fed a high-fat or control diet. Methods: Male mice born to dams fed a control (C) or high fat (H) diet four weeks before conception and during gestation and lactation were assigned to either C or H diet at weaning. Mice (n=24) were sacrificed at 19-weeks and their cerebral cortices were pooled into 8 samples and analysed using an iTRAQ based 2D LC-MS methodology. Results: A total of 6,695 proteins were identified and fully quantified (q<0.01). Approximately 10% of these proteins demonstrated a minimum of one Standard Deviation of regulation across all biological replicates in at least one of the experimental groups (CH, HC, HH) relative to the control (CC). Principal component analysis and hierarchical clustering analysis showed that mice clustered based on the diet of the mother and not their current diet. In silico bioinformatics analysis revealed that maternal high-fat diet was significantly associated with response to hypoxia/oxidative stress and apoptosis in the cerebral cortex of the adult offspring. Conclusion: Maternal high-fat diet was associated with distinct endophenotypic changes of the adult mouse cerebral cortex independent of the diet of the offspring. The identified modulated proteins could represent novel therapeutic targets for the prevention of neuropathological features resulting from maternal obesity.
Project description:Maternal exposure during pregnancy is a strong determinant of offspring health outcomes. Such exposures induce changes in the offspring epigenome resulting in gene expression and functional changes. In this study, we investigated the effect of maternal Western hypercaloric diet (HCD) programming during the perinatal period and its effect on neuronal plasticity and cardiometabolic health in adult offspring. C57BL/6J dams were fed HCD for 1 month prior to mating with regular diet (RD) sires and kept on the same diet throughout pregnancy and lactation. At weaning, offspring were maintained on either HCD or RD for 3 months duration. Maternal programming resulted in male-specific hypertension and hyperglycemia, with both males and females showing increased sympathetic tone to the vasculature. Surprisingly, programmed male offspring fed on HCD exhibited lower glucose levels, less insulin resistance, and leptin levels compared to non-programmed HCD-fed male mice. Hypothalamic genes involved in glial and astrocytic differentiation were differentially methylated in programmed male offspring. Genes involved in inflammation and type 2 diabetes were targeted by differentially expressed miRNA in programmed male offspring. Methyl-seq data were supported by our findings of astrogliosis and microgliosis as well as increased microglial activation in programmed males in the paraventricular nucleus (PVN). Aligned with programming-induced protective effect in HCD male mice, we observed lower protein levels of hypothalamic TGFβ2, NF-κB2, NF-κBp65, Ser-pIRS1, and GLP1R compared to non-programmed HCD-fed male mice. In conclusion, our study shows that maternal HCD programs neuronal plasticity in the offspring and results in male-specific hypertension and hyperglycemia. On the other hand, we observed a compensatory role of programming potentially by priming metabolic pathways to handle excess nutrients in a more efficient way.