Project description:Grapevine cluster compactness is a multi-componential trait of agronomical interest; it greatly influences the vineyard management and the visual aspect of table grape. Clusters with greater compactness are more susceptible to disease. The compactness can be break down in a patchwork of agronomical traits, each having agronomical importance that includes parameters related to inflorescence and cluster architecture (cluster length and width, length of pedicels, etc.), fruitfulness (number of berries, number of seeds) and berry (size, shape, volume...). Through visual evaluation of a collection of 730 clones from the cultivar Tempranillo and 501 clones from Garnacha Tinta we identified and fully phenotyped distinct clones which transcriptomes were compared at key developmental stages in order to identify the genes playing a role in mechanisms involved in cluster compactness such as the ones determining number of berries, cluster length or berry size. Key genes involved in this process were identified. The findings lead us to hypothesize that berry size and/or number at ripening are greatly influenced by the rate of cell replication in flowers during the first stages after pollination.
Project description:Auxin treatment of grape (Vitis vinifera L.) berries delays ripening by inducing changes in gene expression and cell wall metabolism and could combat some deleterious climate change effects. Auxins are inhibitors of grape berry ripening and their application may be useful to delay harvest to counter effects of climate change. However, little is known about how this delay occurs. The expression of 1892 genes was significantly changed compared to the control during a 48 h time-course where the auxin 1-naphthaleneacetic acid (NAA) was applied to pre-veraison grape berries. Principal component analysis showed that the control and auxin-treated samples were most different at 3 h post-treatment when approximately three times more genes were induced than repressed by NAA. There was considerable cross-talk between hormone pathways, particularly between those of auxin and ethylene. Decreased expression of genes encoding putative cell wall catabolic enzymes (including those involved with pectin) and increased expression of putative cellulose synthases indicated that auxins may preserve cell wall structure. This was confirmed by immunochemical labelling of berry sections using antibodies that detect homogalacturonan (LM19) and methyl-esterified homogalacturonan (LM20) and by labelling with the CMB3a cellulose-binding module. Comparison of the auxin-induced changes in gene expression with the pattern of these genes during berry ripening showed that the effect on transcription is a mix of changes that may specifically alter the progress of berry development in a targeted manner and others that could be considered as non-specific changes. Several lines of evidence suggest that cell wall changes and associated berry softening are the first steps in ripening and that delaying cell expansion can delay ripening providing a possible mechanism for the observed auxin effects.
Project description:Anthocyanins, total phenols, soluble sugar and fruit shape play a significant role in determining the distinct fruit quality and customer preference. However, for the majority of fruit species, little is known about the transcriptomics and underlying regulatory networks that control the generation of overall quality during fruit growth and ripening. This study incorporated the quality-related transcriptome data from 6 ecological zones across 3 fruit development and maturity phases of Chardonnay cultivars. With the help of this dataset, we were able to build a complex regulatory network that may be used to identify important structural genes and transcription factors that control the anthocyanins, total phenols, soluble sugars and fruit shape in grapes. Overall, our findings set the groundwork to improve grape quality in addition to offering novel views on quality control during grape development and ripening.
Project description:We applied the RNA-Seq approach to reconstruct the transcriptome of Vitis vinifera cv. Corvina, using RNA pooled from a comprehensive set of sampled tissues in different organs and development steps, and we were able to reconstruct some novel and putative private Corvina genes. We analyzed the expression of these genes in three berry developmental conditions, and posit that they may play some role in the formation of the mature organ. Background: Plants display a high genetic and phenotypic variability among different cultivars. Understanding the genetic components that contribute to phenotypic diversity is necessary to disentangle genetic factors from the environment. Given the high degree of genetic diversity among plant cultivars a whole-genome sequencing and re-annotation of each variety is required but a reliable genome assembly is hindered by the high heterozigosity and sequence divergence. Results: we show the feasibility of an approach based on sequencing of cDNA by RNA-Seq to analyze varietal diversity between a local grape cultivar Corvina and the PN40024 grape reference genome. We detected 15,260 known genes and we annotated alternative splicing isoforms for 9,463 genes. Our approach allowed to define 2,321 protein coding putative novel genes in unannotated or unassembled regions of the reference genome PN40024 and 180 putative private Corvina genes whose sequence is not shared with the reference genome. Conclusions: With a de novo assembly based approach we were able to reconstruct a substantial part of the Corvina transcriptome and we improved substantially known genes annotations by better defining the structure of known genes, annotating splicing isoforms and detecting unannotated genes. Moreover our results clearly define sets of private genes which are likely part of the âdispensableâ genome and potentially involved into influencing some cultivar-specific characteristics. In plant biology a transcriptome de novo assembly approach should not be limited to species where no reference genome is available as it can improve the annotation lead to the identification of genes peculiar of a cultivar.
Project description:Bud endodormancy induction response of two genotypes (Seyval, a hybrid white wine grape and Vitis riparia, PI588259, a native North American grape species) was compared under long (15 h) and short (13 h) photoperiods. Proteins were extracted from both genotypes for all time points and experimental conditions. The proteins were separaed by 2D-PAGE, trypsin digested, and the peptides identified with a MALDI-TOF-TOF mass spectrometer. A master gel was made and mapped with all proteins from both genotypes. The proteins were identified by matching the peptide sequences against the 8X Vitis vinifera grape genome in NCBI. This study was funded by NSF grant DBI064755 and is the result of a collaboration between Dr. Anne Fennell at South Dakota State University and Dr. Grant R. Cramer at the University of Nevada, Reno.
Project description:The abscisic acid (ABA) increase and auxin decline are both indicators of ripening initiation in grape berry, and norisoprenoid accumulation also start at around the onset of ripening. To investigate the transcriptional and posttranscriptional regulation of the ABA and synthetic auxin 1-naphthaleneacetic acid (NAA) on norisoprenoid production, we performed time series GC-MS and RNA-seq analyses on Cabernet Sauvignon grape berries from pre-veraison to ripening. Higher levels of free norisoprenoids were found in ABA-treated mature berries in two consecutive seasons, and both free and total norisoprenoids were significantly increased by NAA in one season. The expression pattern of known norisoprenoid-associated genes in all samples and the up-regulation of specific alternative splicing isoforms of VviDXS and VviCRTISO in NAA-treated berries were predicted to contribute to it. Combined weighted gene co-expression network analysis (WGCNA) and promoter motif prediction analysis suggested that GATA26 and GATA28 could be potential regulators of norisoprenoid accumulation. Finally, the network analysis uncovered the interaction between previously identified switch genes, hormone-related genes and norisoprenoid-associated genes.