Project description:Homologous recombination (HR) is crucial for genetic exchange, accurate repair of DNA double-strand breaks and pivotal for genome integrity. HR uses homologous sequences for repair, but how homology search, the exploration of the genome for homologous DNA sequences, is conducted in the nucleus remains poorly understood. Here, we use time-resolved chromatin immunoprecipitations of repair proteins to monitor homology search in vivo. We found that homology search proceeds by a probing mechanism, which commences around the break and samples preferentially on the broken chromosome. However, elements thought to instruct chromosome loops mediate homology search shortcuts, and centromeres, which cluster within the nucleus, may facilitate homology search on other chromosomes. Our study thus revealed crucial parameters for homology search in vivo and emphasizes the importance of linear distance, chromosome architecture and proximity for recombination efficiency.
Project description:Homologous recombination (HR) is crucial for genetic exchange, accurate repair of DNA double-strand breaks and pivotal for genome integrity. HR uses homologous sequences for repair, but how homology search, the exploration of the genome for homologous DNA sequences, is conducted in the nucleus remains poorly understood. Here, we use time-resolved chromatin immunoprecipitations of repair proteins to monitor homology search in vivo. We found that homology search proceeds by a probing mechanism, which commences around the break and samples preferentially on the broken chromosome. However, elements thought to instruct chromosome loops mediate homology search shortcuts, and centromeres, which cluster within the nucleus, may facilitate homology search on other chromosomes. Our study thus revealed crucial parameters for homology search in vivo and emphasizes the importance of linear distance, chromosome architecture and proximity for recombination efficiency. 2 new custom ChIP-chip platforms used; both Nimblegen; differ in oligo density: (platform 1: 2006-07-18_Scerevisiae_ChIP_Stefan Jentsch MPI Biochemistry S.cerevisiae 385K Tiling Array Version 1) ( platform 2: 100304_Scer2_MS_Chip_Stefan Jentsch MPI Biochemistry S.cerevisiae 135K Tiling Array Version 2) ChIP-chip profiling of DSB repair factors (Rad51, Rad52, RPA, gamma-H2A) upon single inducible DSBs in S.cerevisiae
Project description:Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination. How it operates in cells remains elusive. Here we developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembly of extensive NPFs. DSB end-tethering promotes coordinated homology search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search orchestrated by chromatin organizers, long-range resection, end-tethering, specialized genetic elements, and that exploits the stiff NPF structure conferred by Rad51 oligomerization.
Project description:Break-chip (microarray-based double strand break mapping) analysis of mec1 cells recovering from 200 mM hydroxyurea in the presence or absence of 0.8 micromolar bathophenanthroline sulfonate (BPS).
2015-01-12 | GSE64446 | GEO
Project description:Repair-seq screens of double-strand break repair