Project description:Chromatin regulators have become highly attractive targets for cancer therapy, yet many of these regulators are expressed in a broad range of healthy cells and contribute generally to gene expression. An important conundrum has thus emerged: how can inhibition of a general regulator of gene expression produce selective effects at specific oncogenes? Here we investigate how inhibition of the transcriptional coactivator BRD4 (Bromodomain containing 4) leads to selective inhibition of disease-critical oncogenes in a highly malignant blood cancer, multiple myeloma (MM). We found that BRD4 generally occupies the promoter elements of active genes together with the Mediator coactivator, but remarkably high levels of these two coactivator proteins were associated with a small set of exceptionally large enhancers. These super-enhancers are associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impact genes with super-enhancers, including the c-MYC oncogene. Super-enhancers were found at key oncogenic drivers in many other tumor cells. Thus, super-enhancers can regulate oncogenic drivers in tumor cells, which in some cells can be preferentially disrupted by BRD4 inhibition, which in turn contributes to the selective transcriptional effects observed at these oncogenes. These observations have implications for the discovery of novel cancer therapeutics directed at components of super-enhancers in diverse tumor types. Gene expression profiling in multiple myeloma cells after BET-Bromodomain inhibition with JQ1
Project description:Chromatin regulators have become highly attractive targets for cancer therapy, yet many of these regulators are expressed in a broad range of healthy cells and contribute generally to gene expression. An important conundrum has thus emerged: how can inhibition of a general regulator of gene expression produce selective effects at specific oncogenes? Here we investigate how inhibition of the transcriptional coactivator BRD4 (Bromodomain containing 4) leads to selective inhibition of disease-critical oncogenes in a highly malignant blood cancer, multiple myeloma (MM). We found that BRD4 generally occupies the promoter elements of active genes together with the Mediator coactivator, but remarkably high levels of these two coactivator proteins were associated with a small set of exceptionally large enhancers. These super-enhancers are associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impact genes with super-enhancers, including the c-MYC oncogene. Super-enhancers were found at key oncogenic drivers in many other tumor cells. Thus, super-enhancers can regulate oncogenic drivers in tumor cells, which in some cells can be preferentially disrupted by BRD4 inhibition, which in turn contributes to the selective transcriptional effects observed at these oncogenes. These observations have implications for the discovery of novel cancer therapeutics directed at components of super-enhancers in diverse tumor types. ChIP-Seq for chromatin regulators and RNA Polymerase II in multiple myeloma, glioblastoma multiforme, and small cell lung cancer
Project description:Chromatin regulators have become highly attractive targets for cancer therapy, yet many of these regulators are expressed in a broad range of healthy cells and contribute generally to gene expression. An important conundrum has thus emerged: how can inhibition of a general regulator of gene expression produce selective effects at specific oncogenes? Here we investigate how inhibition of the transcriptional coactivator BRD4 (Bromodomain containing 4) leads to selective inhibition of disease-critical oncogenes in a highly malignant blood cancer, multiple myeloma (MM). We found that BRD4 generally occupies the promoter elements of active genes together with the Mediator coactivator, but remarkably high levels of these two coactivator proteins were associated with a small set of exceptionally large enhancers. These super-enhancers are associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impact genes with super-enhancers, including the c-MYC oncogene. Super-enhancers were found at key oncogenic drivers in many other tumor cells. Thus, super-enhancers can regulate oncogenic drivers in tumor cells, which in some cells can be preferentially disrupted by BRD4 inhibition, which in turn contributes to the selective transcriptional effects observed at these oncogenes. These observations have implications for the discovery of novel cancer therapeutics directed at components of super-enhancers in diverse tumor types.
Project description:Chromatin regulators have become highly attractive targets for cancer therapy, yet many of these regulators are expressed in a broad range of healthy cells and contribute generally to gene expression. An important conundrum has thus emerged: how can inhibition of a general regulator of gene expression produce selective effects at specific oncogenes? Here we investigate how inhibition of the transcriptional coactivator BRD4 (Bromodomain containing 4) leads to selective inhibition of disease-critical oncogenes in a highly malignant blood cancer, multiple myeloma (MM). We found that BRD4 generally occupies the promoter elements of active genes together with the Mediator coactivator, but remarkably high levels of these two coactivator proteins were associated with a small set of exceptionally large enhancers. These super-enhancers are associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impact genes with super-enhancers, including the c-MYC oncogene. Super-enhancers were found at key oncogenic drivers in many other tumor cells. Thus, super-enhancers can regulate oncogenic drivers in tumor cells, which in some cells can be preferentially disrupted by BRD4 inhibition, which in turn contributes to the selective transcriptional effects observed at these oncogenes. These observations have implications for the discovery of novel cancer therapeutics directed at components of super-enhancers in diverse tumor types.
Project description:Cutaneous malignant melanoma (CMM) lacks targeted therapies beyond the oft-circumvented BRAF inhibitors. Part of the difficulty in treating melanomas has been attributed to a strong survival program controlled by melanocyte transcription factors such as MITF - a phenomenon first described in melanoma as “lineage dependency.” Recently, a highly selective covalent CDK7 inhibitor (THZ1) has been shown to potently suppress the growth of various cancers through the depletion of master transcription-regulating oncogenes and the disruption of their attendant super-enhancers. We now show that melanoma cells are highly sensitive to CDK7 inhibition and that a melanocyte “lineage cluster,” whose members are transcriptionally driven by super-enhancers, is also strongly suppressed by THZ1. These results point to CDK7 inhibition as a viable strategy to deprive oncogenic transcription and suppress tumor growth in melanoma.
Project description:Cutaneous malignant melanoma (CMM) lacks targeted therapies beyond the oft-circumvented BRAF inhibitors. Part of the difficulty in treating melanomas has been attributed to a strong survival program controlled by melanocyte transcription factors such as MITF - a phenomenon first described in melanoma as “lineage dependency.” Recently, a highly selective covalent CDK7 inhibitor (THZ1) has been shown to potently suppress the growth of various cancers through the depletion of master transcription-regulating oncogenes and the disruption of their attendant super-enhancers. We now show that melanoma cells are highly sensitive to CDK7 inhibition and that a melanocyte “lineage cluster,” whose members are transcriptionally driven by super-enhancers, is also strongly suppressed by THZ1. These results point to CDK7 inhibition as a viable strategy to deprive oncogenic transcription and suppress tumor growth in melanoma.
Project description:Mediator complex regulates transcription by connecting enhancers to promoters. High Mediator binding density defines super enhancers, which regulate cell-identity genes and oncogenes. Protein interactions of Mediator may explain its role in these processes but have not been identified comprehensively. Here we purify Mediator from neural stem cells (NSCs) and identify 75 protein-protein interaction partners. We identify super enhancers in NSCs and show that Mediator-interacting chromatin modifiers colocalise with Mediator at enhancers and super enhancers. Transcription factor families with high affinity for Mediator dominate enhancers and super enhancers and can explain genome-wide Mediator localization. We identify E-box transcription factor Tcf4 as a key regulator of NSCs. Tcf4 interacts with Mediator, colocalises with Mediator at super enhancers and regulates neurogenic transcription factor genes with super enhancers and broad H3K4me3 domains. Our data suggest that high binding-affinity for Mediator is an important organizing feature in the transcriptional network that determines NSC identity.
Project description:Super-enhancers are large clusters of transcriptional enhancers that drive expression of genes that control and define cell identity. Improved understanding of the roles super-enhancers play in biology would be afforded by knowing the constellation of factors that constitute these domains and by identifying super-enhancers across the spectrum of human cell types. We describe here the population of transcription factors, cofactors, chromatin regulators and core transcription apparatus that occupy super-enhancers in embryonic stem cells (ESCs) and evidence that super-enhancers are highly transcribed. We then use epigenomic data to produce a catalogue of super-enhancers in a broad range of human cell types. These super-enhancer domains are associated with genes encoding master transcription factors and other components that play important roles in the biology of these cells. Interestingly, sequence variation associated with a broad spectrum of diseases is especially enriched in the super-enhancers of disease-relevant cell types. Furthermore, we find that cancer cells generate super-enhancers at oncogenes and other genes that play important roles in tumor pathogenesis. We discuss these insights and their implications for future study of human health and disease. ChIP-Seq for transcription factors in mouse embryonic stem cells and H3K27ac in Jurkat T-ALL cell line RNA-Seq for mouse embryonic stem cells