Project description:Transcriptional profiling of pear tree comparing a resistant/tolerant cultivar with a susceptible cultivar to the Stemphylium vesicarium fungus Rocha' pear is an economically important portuguese Pyrus communis L. cultivar very susceptible to the Stemphylium vesicarium pathogenic fungus, the brown spot agent, causing huge decrease on fruit quality and yield production. Field control of brown spot disease is based in systemic application of antifungal chemicals with high economic costs and dramatic consequences to public health and environmental pollution. Plant-pathogen interactions involve a series of events encompassing constitutive and induced plant defence responses whose dissection has been a research target for control many crop diseases. The biosynthesis of cell wall polymers and antifungal compounds appear to be an efficient physical and chemical barrier to infection.To understand the molecular responses behind defence mechanisms of resistant/tolerant and susceptible cultivars of Pyrus communis L. to the S. vesicarium fungus, cDNA microarray technology was used to identify the genes differentially expressed along a time course leaf inoculation between 'Rocha' pear cultivar (a high susceptible cultivar) and 'Ercolini' pear cultivar (a resistant/tolerant pear cultivar). This study aims to contribute with information on the molecular mechanisms involved in host-pathogen interactions responsible for pear tree brown spot disease and resistance to Stemphylium vesicarium.
Project description:Ornithogalum is one of the therapeutic formulation used in homeopathic treatments. It is specifically used in the treatment for gastric and duodenal ulcerations. Towards understanding the anticancer mechanism, we investigated the genome-wide mRNA changes upon treating AGS Gastric Cancer cells with Ornithogalum. We observed that totally 707 genes were significantly regulated upon Ornithogalum Treatment, among them 246 genes were upregulated and 461 genes were downregulated. The results provide insight into molecular implication and gene level expression of AGS upon treatment with Ornithogalum.
Project description:Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumismelo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon are being extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes to breed new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3´-untranslated regions. Tissues of melon plants from cultivars Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3’264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3’264 specifically deregulated 2925 and 1618 genes in Planters Jumbo and Tendral, respectively. Thus, significantly affected GO categories were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed the identification of two groups specifically deregulated by MNSV-Mα5/3’264 with respect to MNSV-Mα5 in Tendral, and one group antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3’264 infection. Genes in these three groups belong to a diversity of functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene deregulated by the three viruses, with infections dynamics correlating with the amplitude of transcriptome remodeling. Both common and strain-specific changes, as well as common but also cultivar-specific changes, have been identified by profiling transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional implications. Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumismelo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon are being extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes to breed new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3´-untranslated regions. Tissues of melon plants from cultivars Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3’264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3’264 specifically deregulated 2925 and 1618 genes in Planters Jumbo and Tendral, respectively. Thus, significantly affected GO categories were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed the identification of two groups specifically deregulated by MNSV-Mα5/3’264 with respect to MNSV-Mα5 in Tendral, and one group antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3’264 infection. Genes in these three groups belong to a diversity of functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene deregulated by the three viruses, with infections dynamics correlating with the amplitude of transcriptome remodeling. Both common and strain-specific changes, as well as common but also cultivar-specific changes, have been identified by profiling transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional implications.
Project description:Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumismelo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon are being extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes to breed new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3´-untranslated regions. Tissues of melon plants from cultivars Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3’264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3’264 specifically deregulated 2925 and 1618 genes in Planters Jumbo and Tendral, respectively. Thus, significantly affected GO categories were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed the identification of two groups specifically deregulated by MNSV-Mα5/3’264 with respect to MNSV-Mα5 in Tendral, and one group antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3’264 infection. Genes in these three groups belong to a diversity of functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene deregulated by the three viruses, with infections dynamics correlating with the amplitude of transcriptome remodeling. Both common and strain-specific changes, as well as common but also cultivar-specific changes, have been identified by profiling transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional implications. Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumismelo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon are being extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes to breed new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3´-untranslated regions. Tissues of melon plants from cultivars Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3’264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3’264 specifically deregulated 2925 and 1618 genes in Planters Jumbo and Tendral, respectively. Thus, significantly affected GO categories were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed the identification of two groups specifically deregulated by MNSV-Mα5/3’264 with respect to MNSV-Mα5 in Tendral, and one group antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3’264 infection. Genes in these three groups belong to a diversity of functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene deregulated by the three viruses, with infections dynamics correlating with the amplitude of transcriptome remodeling. Both common and strain-specific changes, as well as common but also cultivar-specific changes, have been identified by profiling transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional implications.
Project description:Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the very susceptible spring wheat cultivar Roblin inoculated with either water (H2O), a Fg strain (GZ3639) producing the mycotoxin deoxynivalenol (+DON), or a GZ3639-derived Fg strain which has been inactivated at the Tri5 locus (-DON).
Project description:Transcriptional profiling of pear tree comparing a resistant/tolerant cultivar with a susceptible cultivar to the Stemphylium vesicarium fungus Rocha' pear is an economically important portuguese Pyrus communis L. cultivar very susceptible to the Stemphylium vesicarium pathogenic fungus, the brown spot agent, causing huge decrease on fruit quality and yield production. Field control of brown spot disease is based in systemic application of antifungal chemicals with high economic costs and dramatic consequences to public health and environmental pollution. Plant-pathogen interactions involve a series of events encompassing constitutive and induced plant defence responses whose dissection has been a research target for control many crop diseases. The biosynthesis of cell wall polymers and antifungal compounds appear to be an efficient physical and chemical barrier to infection.To understand the molecular responses behind defence mechanisms of resistant/tolerant and susceptible cultivars of Pyrus communis L. to the S. vesicarium fungus, cDNA microarray technology was used to identify the genes differentially expressed along a time course leaf inoculation between 'Rocha' pear cultivar (a high susceptible cultivar) and 'Ercolini' pear cultivar (a resistant/tolerant pear cultivar). This study aims to contribute with information on the molecular mechanisms involved in host-pathogen interactions responsible for pear tree brown spot disease and resistance to Stemphylium vesicarium. Experimental condition: 'Ercolini' vs 'Rocha' (each experiment including 5 plants from each cultivar). 3 time-points: water-inoculation (T0h), 6 hours after inoculation with S. vesicarium (T6h) and 24 hours after inoculation with S. vesicarium. Biological replicates: 3 in each time-point. One replicate per array.
Project description:Ornithogalum is one of the therapeutic formulation used in homeopathic treatments. It is specifically used in the treatment for gastric and duodenal ulcerations. Towards understanding the anticancer mechanism, we investigated the genome-wide mRNA changes upon treating AGS Gastric Cancer cells with Ornithogalum. We observed that totally 707 genes were significantly regulated upon Ornithogalum Treatment, among them 246 genes were upregulated and 461 genes were downregulated. The results provide insight into molecular implication and gene level expression of AGS upon treatment with Ornithogalum. Total RNA was isolated from AGS gastric cancer cells treated with 0.01% of ornithogalum and ethanol control and profiled using Affymetrix Human Gene 1.0 ST Array (HuGene-1_0-st).
Project description:Wheat seed germination is highly related to seedling survival rate and subsequent vegetative growth,and therefore directly affects the conformation of wheat yield and quality. So wheat seed germination is not only important to itself, but the whole human society. However, due to the large genome size, many studies related to wheat seed are very complex and uncompleted. Transcriptome analysis of elite Chinese bread wheat cultivar Jimai 20 may provides a comprehensive understanding of wheat seed germination. Seed germination involves in the regulation of large number of genes, whether these genes are normal activated or not is very important to seed germination. We performed microarray analysis using the Affymetrix Gene Chip to reveal the gene expression profiles in five phases of wheat cultivar Jimai 20 seed germination. Our results provide a new insights into the thoroughly metabolic changes of seed germination as well as the relationship between some significant genes.