Project description:Brain tumor neurospheres (BTCSs) are cancer cells with neural stem cell-like properties found in the fatal brain tumor glioblastoma multiforme (GBM). These cells account for less than 1% of total tumor cells, are poorly differentiated and are believed to be involved in tumor induction, progression, treatment resistance and relapse. Specific miRNAs play important roles in modulating the proliferation and differentiation of neural stem cells, therefore, we aimed to identify miRNAs controlling differentiation in GBM-BTSCs through high throughput screening miRNA array profiling. We compared the miRNA expression profiles at the neurosphere state and upon 4 and 14days of differentiation by using LIMMA, finding 21 differentially expressed miRNAs : hsa-miR-103, hsa-miR-106a, hsa-miR-106b, hsa-miR-15b, hsa-miR-17, hsa-miR-19a, hsa-miR-20a, hsa-miR-25, hsa-miR-301a and hsa-miR-93 were found up-regulated upon differentiation, while hsa-miR-100, hsa-miR-1259, hsa-miR-21, hsa-miR-22, hsa-miR-221, hsa-miR-222, hsa-miR-23b, hsa-miR-27a, hsa-miR-27b, hsa-miR-29a and hsa-miR-29b were down-regulated. Expression of 11 of the 21 miRNAs was examined by qPCR and 7 of them were validated: hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222 increased their expression upon differentiation, while hsa-miR-93 and hsa-miR-106a were inhibited. Functional studies demonstrated that miR-21 over-expression induced the expression of glial and/or neuronal cell markers in the neurospheres, possibly due to SPRY1 targeting by miR-21 in these cells, while miR-221 and miR-222 inhibition at the differentiated state reduced the expression of those differentiation markers. On the other hand, miR-29a and miR-29b targeted MCL1 in the GBM neurospheres and increased apoptotic cell death. Gene expression in differentiated cells relative to neurospheres in four different glioblastoma cultures
Project description:Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterise extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems.Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterisation was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analysed by high-resolution mass spectrometry.Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR- 323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response.Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.
Project description:Extensive infiltration of the surrounding healthy brain tissue is a critical feature in glioblastoma. Several miRNAs have been related to gliomagenesis, some of them related with the EGFR pathway. We have evaluated whole-genome miRNA expression profiling associated with different EGFR amplification patterns, studied by fluorescence in situ hybridization in tissue microarrays, of 30 cases of primary glioblastoma multiforme, whose clinicopathological and immunohistochemical features have also been analyzed.
Project description:Malignant gliomas represent the most devastating group of brain tumors in adults, among which glioblastoma multiforme (GBM) exhibits the highest malignancy rate. Despite combined modality treatment, GBM recurs and is invariably fatal. A further insight into molecular background of gliomagenesis is required to improve patient outcome. The first aim of this study was to gain broad information on miRNA expression pattern in malignant gliomas, mainly GBM. We investigated the global miRNA profile of malignant glioma tissues by means of miRNA microarrays, deep sequencing and meta-analysis. We selected miRNAs the most frequently deregulated in glioblastoma tissues as well as peritumoral brain areas in comparison to normal human brain. We found candidate miRNAs contributing to progression from gliomas grade III to gliomas grade IV. The meta-analysis of miRNA profiling studies in GBM tissues summarizes the past and recent advances in an investigation of miRNA signature in GBM versus noncancerous human brain and provides a comprehensive overview. We proposed a set of 35 miRNAs which expression is the most frequently deregulated in GBM patients and 30 miRNA candidates recognized as novel GBM biomarkers. miRNA expression profile in the adult malignant gliomas, glioma peritumoral tissues and normal human brain.
Project description:Brain tumor neurospheres (BTCSs) are cancer cells with neural stem cell-like properties found in the fatal brain tumor glioblastoma multiforme (GBM). These cells account for less than 1% of total tumor cells, are poorly differentiated and are believed to be involved in tumor induction, progression, treatment resistance and relapse. Specific miRNAs play important roles in modulating the proliferation and differentiation of neural stem cells, therefore, we aimed to identify miRNAs controlling differentiation in GBM-BTSCs through high throughput screening miRNA array profiling. We compared the miRNA expression profiles at the neurosphere state and upon 4 and 14 days of differentiation by using LIMMA, finding 21 differentially expressed miRNAs : hsa-miR-103, hsa-miR-106a, hsa-miR-106b, hsa-miR-15b, hsa-miR-17, hsa-miR-19a, hsa-miR-20a, hsa-miR-25, hsa-miR-301a and hsa-miR-93 were found up-regulated upon differentiation, while hsa-miR-100, hsa-miR-1259, hsa-miR-21, hsa-miR-22, hsa-miR-221, hsa-miR-222, hsa-miR-23b, hsa-miR-27a, hsa-miR-27b, hsa-miR-29a and hsa-miR-29b were down-regulated. Expression of 11 of the 21 miRNAs was examined by qPCR and 7 of them were validated: hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222 increased their expression upon differentiation, while hsa-miR-93 and hsa-miR-106a were inhibited. Functional studies demonstrated that miR-21 over-expression induced the expression of glial and/or neuronal cell markers in the neurospheres, possibly due to SPRY1 targeting by miR-21 in these cells, while miR-221 and miR-222 inhibition at the differentiated state reduced the expression of those differentiation markers. On the other hand, miR-29a and miR-29b targeted MCL1 in the GBM neurospheres and increased apoptotic cell death. Five GBM cell lines at the neurosphere state or after 4 or 14 days of differentiation
Project description:Glioblastoma multiforme is the most common and most aggressive type of primary brain tumor. The brain-infiltrative character of glioblastoma makes complete surgical removal of the tumor impossible and neither radiation nor current chemotherapy provide cure. Recent evidence shows that glioblastoma multiforme consists of heterogeneous cell populations which differ in tumor-forming potential. Enriched tumor-initiating capacity has been linked to poorly differentiated glioblastoma cells sharing features with neural stem cells. Thus, these cells are important targets for new therapeutic strategies. We aim to identify novel targets controlling maintenance and differentiation in glioblastoma-initiating cells through high throughput screening. To this end, we utilized libraries of small chemical compounds and small interference RNAs in combination with automated imaging and data analysis. Patient-derived glioblastoma cells were expanded and characterized using neural stem cell conditions. In culture, the cells showed low differentiation but expression of neural stem cell markers such as Nestin and Sox2. Upon intracranial injection into SCID mice these cells gave rise to tumors displaying the hallmarks of the human disease. Differentiation of glioblastoma-initiating cells (for example elicited through bone morphogenetic protein, BMP) was associated with strong morphological changes. Hence, cellular morphology, as well as markers specific for differentiation or death were used as screen readout. Lentiviral RNA interference-based screening yielded several gene knockdowns leading to ‘forced’ differentiation of glioblastoma-initiating cells. For example, knockdown of TRRAP (transformation/transcription domain associated protein) led to strongly increased differentiation and loss of proliferative and self-renewing capacity in these cells. TRRAP is an adapter protein implicated in oncogenic transformation through c-MYC transcription activation, also participating in chromatin remodeling and DNA repair. Glioblastoma-initiating cells with reduced TRRAP displayed increased apoptosis upon treatment with the genotoxic agent temozolomide. In vivo, Trapp knockdown cells were not able to give rise to glioblastoma upon transplantation into the brain of SCID mice. Together, these findings support a crucial role for TRRAP in maintenance and tumorigenicity of glioblastoma-initiating cells and might offer future therapeutic options. Two treatments compared to control: two different shRNA sequences for TRRAP were compared to a control shRNA sequence in their effects on global transcription in brain tumor initiating cells
Project description:Glioblastoma is the most aggressive and lethal malignant brain tumor. miRNA expression profiling could be useful in improving the classification of tumors and predicting their behavior. In this study, the miRNA expression patterns in glioblastoma tumor tissues and adjacent normal tissues were identified through expression profiling of a patient with glioblastoma. The results will hopefully enhance our understandings of the epigentic changes in glioblastoma progression and provide candidates for miRNAs-based targeting tharapy. A paired miRNAs tumor tissues and adjacent tissues of a glioblastoma patient was used in this study. miRNAs were isolated using miRNeasy FFPE Kit (Qiagen). Profiling was established by applying the Agilent human miRNA Microarray (8 M-CM-^W 60K, v16.0) (Agilent Technologies).
Project description:Although glioblastoma multiforme is a common brain tumor, there is a need to elucidate underlying mechanisms behind its initiation and progression and identifying key molecular pathways for improving treatment. Here, we used combined miRNA-mRNA transcriptome analysis to discover novel genes and networks in GBM