Project description:Persistent severe asthma is associated with hyper-contractile airways and structural changes in the airway wall, including an increased airway smooth muscle (ASM) mass. This study used gene expression profiles from asthmatic and healthy airway smooth muscle cells grown in culture to identify novel receptors and pathways that potentially contributed to asthma pathogenesis. We used microarrays to compare the gene expression between asthmatic and healthy airway smooth muscle cells to understand the underlying pathway contributing the differences in cellular phenotypes Asthmatic airway smooth muscle cells (ASMC) are intrinsically different and have a differential transcriptional response to pro-fibrotic, pro-proliferation and pro-inflammatory stimuli than ASMC from healthy patients. We sought to identify genes that are differentially expressed between asthmatic and healthy ASMC under various stimulations which mimic the asthmatic airways. To this end, we obtained human ASMC from bronchial biopsies and explanted lungs from doctor diagnosed asthmatic patients (n=3) and healthy controls (n=3). The ASMC were then grown in culture and treated with pro-fibrotic (Transforming growth factor beta (TGFβ)), pro-proliferation (Fetal Bovine Serum (FBS)) and pro-inflammatory stimuli (Interleukin-1 beta (IL-1β)) for 8 hours. Gene expression was then evaluated using Affymetrix Human Gene 1.0ST arrays.
Project description:We tested the hypothesis that cholinergic stimulation (via treatment with carbachol) and cyclic stretch regulate inflammatory gene expression in intact airway smooth muscle by measuring mRNA expression in bovine tracheal smooth muscle. Keywords: response to stress and drug
Project description:Human airway smooth muscle cells were co-cultured with BEAS-2B epithelial cells (or Control). Airway smooth muscle RNA was extracted and sent for Illumina HT-12 micro-array to examine gene expression.
Project description:Smooth muscle differentiation has been proposed to sculpt airway epithelial branches in mammalian lungs. Serum response factor (SRF) acts with its cofactor myocardin to promote the expression of contractile smooth muscle markers. However, smooth muscle cells exhibit a variety of phenotypes beyond contractile that are independent of SRF-myocardin-induced transcription. To determine whether airway smooth muscle exhibits phenotypic plasticity during embryonic development, we deleted Srf from the pulmonary mesenchyme. Srf-mutant lungs branch normally, and the mesenchyme exhibits normal cytoskeletal features and patterning. scRNA-seq revealed an Srf-null smooth muscle cluster wrapping the airways of mutant lungs that lacks contractile smooth muscle markers but retains many features of control smooth muscle. Srf-null airway smooth muscle exhibits a synthetic phenotype, compared to the contractile phenotype of wildtype airway smooth muscle. Our findings reveal plasticity in mesenchymal differentiation during lung development and demonstrate that a synthetic smooth muscle layer is sufficient for airway branching morphogenesis.