Project description:Dissimilatory iron reduction by hyperthermophilic archaea occurs in many geothermal environments and generally relies on microbe-mineral interactions that transform various iron oxide minerals. In this study, the physiology of dissimilatory iron and nitrate reduction was examined in the hyperthermophilic crenarchaeon Pyrodictium delaneyi Su06T. Protein electrophoresis showed that the c-type cytochrome and general protein compositions of P. delaneyi changed when grown on ferrihydrite relative to nitrate. Differential proteomic analyses using tandem mass tagged protein fragments and mass spectrometry detected 660 proteins and differential production of 127 proteins. Among these, two putative membrane-bound molybdopterin-dependent oxidoreductase complexes increased in relative abundance 60- to 3,000-fold and 50-100-fold in cells grown on iron oxide. A putative 8-heme c-type cytochrome was 60-fold more abundant in iron grown cells and was unique to the Pyrodictiaceae. There was also a >14,700-fold increase in a membrane transport protein in iron grown cells. There were no changes in the abundances of flagellin proteins nor a putative nitrate reductase, but a membrane nitric oxide reductase was more abundant on nitrate. These data help to elucidate the mechanisms by which hyperthermophilic crenarchaea generate energy and transfer electrons across the membrane to iron oxide minerals.
Project description:The non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi is investigated using the RNA-seq technology. A dedicated computational pipeline analyzes RNA-seq reads and prior genome annotation to identify small RNAs, untranslated regions of mRNAs, and cis-encoded antisense transcripts. Unlike other archaea, such as Sulfolobus and Halobacteriales, P. abyssi produces few leaderless mRNA transcripts. Antisense transcription is widespread (215 transcripts) and targets protein-coding genes that are less conserved than average genes. We identify at least three novel H/ACA-like guide RNAs among the newly characterized non-coding RNAs. Long 5' UTRs in mRNAs of ribosomal proteins and amino-acid biosynthesis genes strongly suggest the presence of cis-regulatory leaders in these mRNAs. We selected a high-interest subset of non-coding RNAs based on their strong promoters, high GC-content, phylogenetic conservation, or abundance. Some of the novel small RNAs and long 5' UTRs display high GC contents, suggesting unknown structural RNA functions. However, we were surprised to observe that most of the high-interest RNAs are AU-rich, which suggests an absence of stable secondary structure in the high-temperature environment of P. abyssi. Yet, these transcripts display other hallmarks of functionality, such as high expression or high conservation, which leads us to consider possible RNA functions that do not require extensive secondary structure. directional RNA-seq, Illumina GA-IIx
Project description:The non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi is investigated using the RNA-seq technology. A dedicated computational pipeline analyzes RNA-seq reads and prior genome annotation to identify small RNAs, untranslated regions of mRNAs, and cis-encoded antisense transcripts. Unlike other archaea, such as Sulfolobus and Halobacteriales, P. abyssi produces few leaderless mRNA transcripts. Antisense transcription is widespread (215 transcripts) and targets protein-coding genes that are less conserved than average genes. We identify at least three novel H/ACA-like guide RNAs among the newly characterized non-coding RNAs. Long 5' UTRs in mRNAs of ribosomal proteins and amino-acid biosynthesis genes strongly suggest the presence of cis-regulatory leaders in these mRNAs. We selected a high-interest subset of non-coding RNAs based on their strong promoters, high GC-content, phylogenetic conservation, or abundance. Some of the novel small RNAs and long 5' UTRs display high GC contents, suggesting unknown structural RNA functions. However, we were surprised to observe that most of the high-interest RNAs are AU-rich, which suggests an absence of stable secondary structure in the high-temperature environment of P. abyssi. Yet, these transcripts display other hallmarks of functionality, such as high expression or high conservation, which leads us to consider possible RNA functions that do not require extensive secondary structure.
Project description:An open reading frame coding for a putative protein-serine/threonine phosphatase was identified in the hyperthermophilic archaeon Pyrodictium abyssi TAG11 and named Py-PP1. Py-PP1 was expressed in Escherichia coli, purified from inclusion bodies, and biochemically characterized. The phosphatase gene is part of an operon which may provide, for the first time, insight into a physiological role for archaeal protein phosphatases in vivo.
Project description:Recent advances in the study of archaeal DNA replication have uncovered defined replication origins (oriC) and demonstrated specific binding of the Cdc6/Orc1 protein and Mcm helicase to oriC in vivo and/or in vitro. The oriC of the hyperthermophilic archaeon Pyrococcus abyssi is characterized by 13 bp repeats, AT-rich regions and an inverted repeat whose precise roles remain unclear. We report here that the 13 bp repeats are widespread in the three Pyrococcus genomes. Nevertheless, by means of chromatin immunoprecipitation coupled with hybridization on a whole genome microarray (ChIP-chip), we found that binding of P. abyssi Cdc6/Orc1 to oriC in vivo was highly specific both in exponential and stationary phases, allowing oriC to be distinguished in the 1.8 M bp genome. ChIP-chip analysis also indicated that a single 13 bp repeat is not sufficient for stable binding of Cdc6/Orc1. Purified Cdc6/Orc1 binds a DNA fragment containing the inverted repeat of oriC with a relatively low affinity, suggesting that multiple clusters of the 13 bp repeat discovered in this study contribute to the stable binding of Cdc6/Orc1 to oriC. Our ChIP-chip analysis revealed that Mcm also binds oriC only in proliferating cells, consistent with its role as a licensing factor. Finally, we found that both Cdc6/Orc1 and Mcm have one additional target site. Notably, Mcm binds constitutively to a GC-rich region containing two rRNA genes and a tRNA gene, suggesting a role of archaeal Mcm in DNA replication and/or transcription of this peculiar region. Keywords: ChIP-chip