Project description:Liposarcomas are rare, heterogeneous and malignant tumors that can be divided into five histological subtypes with different characteristics and clinical behavior. Treatment consists of surgery in combination with systemic chemotherapy, but nevertheless mortality rates are high. More insight into the biology of liposarcoma tumorigenesis is needed to devise novel therapeutic approaches. MicroRNAs (miRNAs) have been associated with carcinogenesis in many tumors and may function as tumor suppressor or oncogene. In this study we examined miRNA expression in an initial series of 57 human liposarcomas (including all subtypes), lipomas and normal fat by miRNA microarrays. Supervised hierarchical clustering of the most differentially expressed miRNAs (p<0.0002) distinguished most liposarcoma subtypes and control tissues. The distinction between well differentiated liposarcomas and benign lipomas was blurred, suggesting these tumor types may represent a biological continuum. MiRNA signatures of liposarcoma subtypes were established and validated in an independent series of 58 liposarcomas and control tissues. The expression of the miR-143/145 and miR-144/451 cluster members was clearly reduced in liposarcomas compared to normal fat. Overexpression of miR-145 and miR-451 in liposarcoma cell lines decreased cellular proliferation rate, impaired cell cycle progression and induced apoptosis. In conclusion, we show that miRNA expression profiling can be used to discriminate liposarcoma subtypes, which could aid in objective diagnostic decision making. In addition, our data indicate that miR-145 and miR-451 act as tumor suppressors in adipose tissue and show that re-expression of these miRNAs could be a promising therapeutic strategy for liposarcomas. 57 samples discovery set, 58 samples in validation set, subdivided in 5 liposarcoma subtypes plus lipomas and normal fat as control samples. Each sample was analysed on one array. All array probes are present in duplicate.
Project description:Liposarcomas are rare, heterogeneous and malignant tumors that can be divided into five histological subtypes with different characteristics and clinical behavior. Treatment consists of surgery in combination with systemic chemotherapy, but nevertheless mortality rates are high. More insight into the biology of liposarcoma tumorigenesis is needed to devise novel therapeutic approaches. MicroRNAs (miRNAs) have been associated with carcinogenesis in many tumors and may function as tumor suppressor or oncogene. In this study we examined miRNA expression in an initial series of 57 human liposarcomas (including all subtypes), lipomas and normal fat by miRNA microarrays. Supervised hierarchical clustering of the most differentially expressed miRNAs (p<0.0002) distinguished most liposarcoma subtypes and control tissues. The distinction between well differentiated liposarcomas and benign lipomas was blurred, suggesting these tumor types may represent a biological continuum. MiRNA signatures of liposarcoma subtypes were established and validated in an independent series of 58 liposarcomas and control tissues. The expression of the miR-143/145 and miR-144/451 cluster members was clearly reduced in liposarcomas compared to normal fat. Overexpression of miR-145 and miR-451 in liposarcoma cell lines decreased cellular proliferation rate, impaired cell cycle progression and induced apoptosis. In conclusion, we show that miRNA expression profiling can be used to discriminate liposarcoma subtypes, which could aid in objective diagnostic decision making. In addition, our data indicate that miR-145 and miR-451 act as tumor suppressors in adipose tissue and show that re-expression of these miRNAs could be a promising therapeutic strategy for liposarcomas. 57 samples discovery set, 58 samples in validation set, subdivided in 5 liposarcoma subtypes plus lipomas and normal fat as control samples. Each sample was analysed on one array. All array probes are present in duplicate.
Project description:Liposarcomas are rare, heterogeneous and malignant tumors that can be divided into five histological subtypes with different characteristics and clinical behavior. Treatment consists of surgery in combination with systemic chemotherapy, but nevertheless mortality rates are high. More insight into the biology of liposarcoma tumorigenesis is needed to devise novel therapeutic approaches. MicroRNAs (miRNAs) have been associated with carcinogenesis in many tumors and may function as tumor suppressor or oncogene. In this study we examined miRNA expression in an initial series of 57 human liposarcomas (including all subtypes), lipomas and normal fat by miRNA microarrays. Supervised hierarchical clustering of the most differentially expressed miRNAs (p<0.0002) distinguished most liposarcoma subtypes and control tissues. The distinction between well differentiated liposarcomas and benign lipomas was blurred, suggesting these tumor types may represent a biological continuum. MiRNA signatures of liposarcoma subtypes were established and validated in an independent series of 58 liposarcomas and control tissues. The expression of the miR-143/145 and miR-144/451 cluster members was clearly reduced in liposarcomas compared to normal fat. Overexpression of miR-145 and miR-451 in liposarcoma cell lines decreased cellular proliferation rate, impaired cell cycle progression and induced apoptosis. In conclusion, we show that miRNA expression profiling can be used to discriminate liposarcoma subtypes, which could aid in objective diagnostic decision making. In addition, our data indicate that miR-145 and miR-451 act as tumor suppressors in adipose tissue and show that re-expression of these miRNAs could be a promising therapeutic strategy for liposarcomas.
Project description:Liposarcomas are rare, heterogeneous and malignant tumors that can be divided into five histological subtypes with different characteristics and clinical behavior. Treatment consists of surgery in combination with systemic chemotherapy, but nevertheless mortality rates are high. More insight into the biology of liposarcoma tumorigenesis is needed to devise novel therapeutic approaches. MicroRNAs (miRNAs) have been associated with carcinogenesis in many tumors and may function as tumor suppressor or oncogene. In this study we examined miRNA expression in an initial series of 57 human liposarcomas (including all subtypes), lipomas and normal fat by miRNA microarrays. Supervised hierarchical clustering of the most differentially expressed miRNAs (p<0.0002) distinguished most liposarcoma subtypes and control tissues. The distinction between well differentiated liposarcomas and benign lipomas was blurred, suggesting these tumor types may represent a biological continuum. MiRNA signatures of liposarcoma subtypes were established and validated in an independent series of 58 liposarcomas and control tissues. The expression of the miR-143/145 and miR-144/451 cluster members was clearly reduced in liposarcomas compared to normal fat. Overexpression of miR-145 and miR-451 in liposarcoma cell lines decreased cellular proliferation rate, impaired cell cycle progression and induced apoptosis. In conclusion, we show that miRNA expression profiling can be used to discriminate liposarcoma subtypes, which could aid in objective diagnostic decision making. In addition, our data indicate that miR-145 and miR-451 act as tumor suppressors in adipose tissue and show that re-expression of these miRNAs could be a promising therapeutic strategy for liposarcomas.
Project description:microRNA miR-144/451 is highly expressed during erythropoiesis. We deleted the miR-144/451 gene locus in mice and compared the transcriptomes of miR-144/451-null bone marrow erythroid precursors to stage-matched wild-type control cells.
Project description:We evaluated the profile of miRNA and snoRNA expression in 5 synchronous CRC and matched normal colorectal tissues using the Affymetrix GeneChip miRNA 1.0 array. A total of 24 miRNA differential expressed transcripts which represent 27 mature miRNAs, including an oncogenic miR-17-92a and oncosuppressive miR-143-145 cluster, and a global up-regulation of snoRNAs were revealed in cancer tissues compared with matched normal tissues. Global miRNA expression could distinguish synchronous cancer from normal mucosa. Our findings represent the first comprehensive miRNA and snoRNA expression signatures for synchronous CRC, which increase the understanding of the molecular basis of synchronous CRC, and firstly implicate that dysregulation of snoRNAs and miRNA clusters may present therapeutic targets for synchronous CRC. Examination of microRNA and snoRNA expression in synchronous CRC and matched normal colorectal tissues
Project description:We recently identified a subset of down-regulated miRNAs such as miR-145 and miR-133a in bladder cancer. Cell growth inhibitions occurred in miR-145 and miR-133a transfectants compared with the controls, suggesting that both miRNAs function as tumor suppressors. The aims of our expression studies were identification of these miRNAs target genes.
Project description:To identify differentially expressed genes by anti cancer treatments (microRNAs or siRNAs) in human cancer, several cell lines (bladder cancer, prostate cancer, renal cell carcinoma, oral squamous cell carcinoma and lung squamous cell carcinoma) were subjected to Agilent whole genome microarrays. Human cancer cell lines (SAS, HSC3, BOY, T24, PC3, PC3M, DU145, C4-2, 786-O, A-498 and EBC-1) were treated with miRNAs (miR-205, miR-29a, miR-144-3p, miR-144-5p, miR-451, miR-210, miR-145-5p, miR-145-3p, miR-23b cluster, miR-221, miR-222 and miR-223), siRNAs (si-GOLM1, si-HMGB3, si-CENPF, si-LOXL2, si-TMEM184B and si-CORO1C).