Project description:The whole rat genome microarray expression profiling of carotid artery specimen was emplyed to identify the gene expression profile before and after balloon injury. In our study, the neointimal formation of carotid arteries was apparent at day 7 and markedly increased at day 21 after balloon injury. In order to investigate the underlying mechanism of neointimal formationin in injured carotid arteries, all genes involved in signaling pathways whose expression was altered 2-fold in injured carotid arteries at day 7 and day 21 as compared to uninjured arteries were filtered out. Expression of four genes (TLR4, IRAK1, IM-NM-:BM-NM-1, IL-1M-NM-2) from TLR signaling pathway was quantified in the same RNA samples by quantitative real-time PCR, conforming that TLR signaling pathway participated in neointimal formation of carotid arteries after balloon injury. Balloon injury-induced gene expression in wistar rat was measured at day 7 and day 21 after balloon injury as compared with uninjured arteries. Two independent experiments were performed at each time (uninjured, day 7 or day 21) using different wistar rats for each experiment.
Project description:The whole rat genome microarray expression profiling of carotid artery specimen was emplyed to identify the gene expression profile before and after balloon injury. In our study, the neointimal formation of carotid arteries was apparent at day 7 and markedly increased at day 21 after balloon injury. In order to investigate the underlying mechanism of neointimal formationin in injured carotid arteries, all genes involved in signaling pathways whose expression was altered 2-fold in injured carotid arteries at day 7 and day 21 as compared to uninjured arteries were filtered out. Expression of four genes (TLR4, IRAK1, IκBα, IL-1β) from TLR signaling pathway was quantified in the same RNA samples by quantitative real-time PCR, conforming that TLR signaling pathway participated in neointimal formation of carotid arteries after balloon injury.
Project description:The proliferation and remodeling of vascular smooth muscle cells (VSMCs) is an important pathological event in atherosclerosis and restenosis. Here we report that microRNA-132 (miR-132) blocks vascular smooth muscle cells (VSMC) proliferation by inhibiting the expression of LRRFIP1 [leucine-rich repeat (in Flightless 1) interacting protein-1]. MicroRNA microarray revealed that miR-132 was upregulated in the rat carotid artery after catheter injury, which was further confirmed by quantitative real-time RT-PCR. Transfection of an miR-132 mimic significantly inhibited the proliferation of VSMCs, whereas transfection of an miR-132 antagomir increased it. Bioinformatics showed that LRRFIP1 is a target candidate of miR-132. miR-132 down-regulated luciferase activity driven by a vector containing the 3’-untranslated region of Lrrfip1 in a sequence-specific manner. LRRFIP1 induced VSMC proliferation. Immunohistochemical analysis revealed that Lrrfip1 was clearly expressed along with the basal laminar area of smooth muscle, and its expression pattern was disrupted 7 days after arterial injury LRRFIP1 mRNA was decreased 14 days after injury. Delivery of miR-132 to rat carotid artery attenuated neointimal proliferation in carotid artery injury models. Our results suggest that miR-132 is a novel regulator of VSMC proliferation that represses neointimal formation by inhibiting LRRFIP1 expression. Balloon injury was induced in the carotid arteries of male Sprague–Dawley rats weighing approximately 250 g. Total RNA were extracted from the arterial sections after 10 days. MicroRNA profile of the sample was compared with non-injured control.
Project description:Our objective is to identify new miRNAs and their target mRNAs involved in arterial stenosis, especially pathological changes of smooth muscle cells. To this end, the balloon injury model was used to induce the activation of smooth muscle cells by damaging arterial endothelial cells. The balloon-injured rat carotid arteries were isolated and subjected to the RNA-Seq.
Project description:Tissue Factor Pathway Inhibitor-2 is Induced by Fluid Shear Stress in Vascular Smooth Muscle Cells and Affects Cell Proliferation and Survival Introduction: Vascular smooth muscle cells (SMCs) are exposed to fluid shear stress (FSS) after interventional procedures such as balloon-angioplasty. Whereas the effects of hemodynamic forces on endothelial cells are explored in detail, the influence of FSS on smooth muscle cell function is poorly characterized. Here, we investigated the effect of FSS on SMC gene expression and function. Methods: Laminar FSS of arterial level (14 dynes/cm2) was applied to SMC cultures for 24 h in a parallel-plate flow chamber. The effect of FSS on gene expression was first screened with microarray technology and the results further verified by real time (RT) PCR and immunoblotting. Protein expression was also studied in the rat carotid artery after balloon-injury and DNA synthesis and apoptosis was examined in SMCs in vitro. Results: Microarrays identified tissue-pathway inhibitor-2 (TFPI-2) as the most differentially expressed gene by FSS in cultured SMCs. The regulatory effect of FSS on the expression of TFPI-2 was confirmed by RT-PCR and immunobloting demonstrating a more than 400-fold increase in TFPI-2 expression in SMCs exposed to FSS compared to static controls and a consistent upregulation at the protein level. Functionally, SMC proliferation was decreased by FSS and recombinant TFPI-2 was found to inhibit SMC proliferation and induce SMC apoptosis as indicated by activation of caspase-3. In vivo, TFPI-2 expression was found to be up-regulated 5, 10 and 20 h after rat carotid balloon-injury and immunohistochemistry demonstrated TFPI-2 protein in luminal SMCs exposed to FSS in rat carotid intimal hyperplasia 10 days after balloon-injury. Conclusion: FSS strongly influence gene expression in cultured SMCs and induce TFPI-2 expression, which is also expressed after rat carotid balloon injury in luminal SMCs exposed to FSS. Functionally, TFPI-2 may play an important role in vessel wall repair by regulating SMC proliferation and survival. Further studies are needed to elucidate the mechanisms by which TFPI-2 control SMC function. 3 x 2 samples from a paired fluid shear stress experiment on smooth muscle cells.
Project description:Our objective is to identify new miRNAs and their target mRNAs involved in arterial stenosis, especially pathological changes of smooth muscle cells. To this end, the balloon injury model was used to induce the activation of smooth muscle cells by damaging arterial endothelial cells. The balloon-injured rat carotid arteries were isolated and subjected to the RNA-Seq. Note: Raw sequencing data have been lost for this dataset.
Project description:Tissue Factor Pathway Inhibitor-2 is Induced by Fluid Shear Stress in Vascular Smooth Muscle Cells and Affects Cell Proliferation and Survival Introduction: Vascular smooth muscle cells (SMCs) are exposed to fluid shear stress (FSS) after interventional procedures such as balloon-angioplasty. Whereas the effects of hemodynamic forces on endothelial cells are explored in detail, the influence of FSS on smooth muscle cell function is poorly characterized. Here, we investigated the effect of FSS on SMC gene expression and function. Methods: Laminar FSS of arterial level (14 dynes/cm2) was applied to SMC cultures for 24 h in a parallel-plate flow chamber. The effect of FSS on gene expression was first screened with microarray technology and the results further verified by real time (RT) PCR and immunoblotting. Protein expression was also studied in the rat carotid artery after balloon-injury and DNA synthesis and apoptosis was examined in SMCs in vitro. Results: Microarrays identified tissue-pathway inhibitor-2 (TFPI-2) as the most differentially expressed gene by FSS in cultured SMCs. The regulatory effect of FSS on the expression of TFPI-2 was confirmed by RT-PCR and immunobloting demonstrating a more than 400-fold increase in TFPI-2 expression in SMCs exposed to FSS compared to static controls and a consistent upregulation at the protein level. Functionally, SMC proliferation was decreased by FSS and recombinant TFPI-2 was found to inhibit SMC proliferation and induce SMC apoptosis as indicated by activation of caspase-3. In vivo, TFPI-2 expression was found to be up-regulated 5, 10 and 20 h after rat carotid balloon-injury and immunohistochemistry demonstrated TFPI-2 protein in luminal SMCs exposed to FSS in rat carotid intimal hyperplasia 10 days after balloon-injury. Conclusion: FSS strongly influence gene expression in cultured SMCs and induce TFPI-2 expression, which is also expressed after rat carotid balloon injury in luminal SMCs exposed to FSS. Functionally, TFPI-2 may play an important role in vessel wall repair by regulating SMC proliferation and survival. Further studies are needed to elucidate the mechanisms by which TFPI-2 control SMC function.
Project description:Injury of the arterial endothelial lamina, also called intimal injury, usually occurs after carotid endarterectomy, peripheral artery brachytherapy, stent placement for arterial occlusive disease and balloon dilatation surgeries. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes during this process.