Project description:Centaurea cyanus has been a weed in farmland for a long time. In this study, the chloroplast genome of C. cyanus was sequenced to establish the phylogenetic relationship between its genomic characteristics and other related species. The chloroplast gene structure of C. cyanus is a circular molecule with a length of 152,433 bp, including a large single-copy (LSC) region of 83,464 bp, a small single-copy (SSC) region of 18,545 bp, and a pair of inverted repeats sequences (IRs) region of 25,212 bp. The whole genome contains 130 genes, including 86 protein-coding genes, 36 tRNA genes, and eight rRNA genes. Phylogenetic analysis showed that C. cyanus is close to Carthamus. tinctorius, C. tinctorius, C. diffusa, and C. maculosa, and all of them were in one clade. This study provides genetic resource information for the further study of Centaurea.
Project description:Egg rejection often involves a cognitive process of recognizing foreign eggs, which can vary not only between species or among different individuals of the same species, but also within the same individual during different breeding stages, leading to markedly different responses to parasitic eggs. We conducted a comparative study in Wuhan, Hubei, and Fusong, Jilin, China, on the recognition and rejection behavior of azure-winged magpies (Cyanopica cyanus) at different breeding stages (pre-egg-laying, one-host-egg, multi-host-egg and early incubation stages). In the Fusong population, there was a significant difference in the rejection rate of model eggs by azure-winged magpies at different stages of the egg-laying period. During the one-host-egg stage, the rejection rate (63.6%) was significantly lower than that during the pre-egg-laying stage (85.7%) and the multi-host-egg stage (100%). The population of azure-winged magpies in Wuhan exhibited a 100% rejection rate towards model eggs during the pre-egg-laying stage. Furthermore, during the incubation stage, azure-winged magpies were able to accurately recognize and reject foreign eggs even when those were in majority. This indicates that azure-winged magpies employ a template-based recognition mechanism rather than relying on discordance mechanism for recognition after the onset of incubation. This study suggests that while azure-winged magpies can truly recognize their own eggs, different breeding stages still influence their rejection response towards parasitic eggs, especially during the pre-egg-laying and egg laying stages.
Project description:To what extent can the mammalian visual system be shaped by visual behavior? Here we analyze the shape of the visual fields, the densities and distribution of cells in the retinal ganglion-cell layer and the organization of the visual projections in two species of facultative non-strictly subterranean rodents, Spalacopus cyanus and Ctenomys talarum, aiming to compare these traits with those of phylogenetically closely related species possessing contrasting diurnal/nocturnal visual habits. S. cyanus shows a definite zone of frontal binocular overlap and a corresponding area centralis, but a highly reduced amount of ipsilateral retinal projections. The situation in C. talarum is more extreme as it lacks of a fronto-ventral area of binocular superposition, has no recognizable area centralis and shows no ipsilateral retinal projections except to the suprachiasmatic nucleus. In both species, the extension of the monocular visual field and of the dorsal region of binocular overlap as well as the whole set of contralateral visual projections, appear well-developed. We conclude that these subterranean rodents exhibit, paradoxically, diurnal instead of nocturnal visual specializations, but at the same time suffer a specific regression of the anatomical substrate for stereopsis. We discuss these findings in light of the visual ecology of subterranean lifestyles.
Project description:Background and aimsThe Balkan Peninsula is one of the most important centres of plant diversity in Europe. Here we aim to fill the gap in the current knowledge of the evolutionary processes and factors modelling this astonishing biological richness by applying multiple approaches to the Cyanus napulifer group.MethodsTo reconstruct the mode of diversification within the C. napulifer group and to uncover its relationships with potential relatives with x = 10 from Europe and Northern Africa, we examined variation in genetic markers (amplified fragment length polymorphisms [AFLPs]; 460 individuals), relative DNA content (4',6-diamidino-2-phenylindole [DAPI] flow cytometry, 330 individuals) and morphology (multivariate morphometrics, 40 morphological characters, 710 individuals). To elucidate its evolutionary history, we analysed chloroplast DNA (cpDNA) sequences of the genus Cyanus deposited in the GenBank database.Key resultsThe AFLPs revealed a suite of closely related entities with variable levels of differentiation. The C. napulifer group formed a genetically well-defined unit. Samples outside the group formed strongly diversified and mostly species-specific genetic lineages with no further geographical patterns, often characterized also by a different DNA content. AFLP analysis of the C. napulifer group revealed extensive radiation and split it into nine allopatric (sub)lineages with varying degrees of congruence among genetic, DNA-content and morphological patterns. Genetic admixture was usually detected in contact zones between genetic lineages. Plastid data indicated extensive maintenance of ancestral variation across Cyanus perennials.ConclusionThe C. napulifer group is an example of a rapidly and recently diversified plant group whose genetic lineages have evolved in spatio-temporal isolation on the topographically complex Balkan Peninsula. Adaptive radiation, accompanied in some cases by long-term isolation and hybridization, has contributed to the formation of this species complex and its mosaic pattern.