Project description:Bifidobacterium animalis subsp. lactis BLC1 is a probiotic bacterium that is widely exploited by food industries as the active ingredient of various functional foods. Here we report the complete genome sequence of B. animalis subsp. lactis BLC1, which is expected to provide insights into the biology of this health-promoting microorganism and improve our understanding of its phylogenetic relatedness with other members of the B. animalis subsp. lactis taxon.
Project description:Comparison of the growth of Bifidobacterium animalis subsp. lactis BB12 in MRS (without carbon source) with either 2% XOS (xylo-oligosaccharides) or 2% glucose using whole-genome transcriptome analysis.
Project description:All strains of Bifidobacterium animalis subsp. lactis described to date show medium level resistance to tetracycline. Screening of 26 strains from a variety of sources revealed the presence of tet(W) in all isolates. A transposase gene upstream of tet(W) was found in all strains, and both genes were cotranscribed in strain IPLAIC4. Mutants with increased tetracycline resistance as well as tetracycline-sensitive mutants of IPLAIC4 were isolated and genetically characterized. The native tet(W) gene was able to restore the resistance phenotype to a mutant with an alteration in tet(W) by functional complementation, indicating that tet(W) is necessary and sufficient for the tetracycline resistance seen in B. animalis subsp. lactis.
Project description:Bifidobacterium animalis subsp. lactis is a probiotic bacterium that naturally inhabits the guts of most mammals, including humans. Here we report the complete genome sequence of B. animalis subsp. lactis AD011 that was isolated from an infant fecal sample. Biological functions encoded in a single circular chromosome of 1,933,695 bp, smallest among the completely sequenced bifidobacterial genomes, are suggestive of their probiotic functions, such as utilization of bifidogenic factors and a variety of glycosidic enzymes and biosynthesis of polysaccharides.
Project description:Bifidobacterium animalis subsp. lactis strain V9 is a Chinese commercial bifidobacteria with several probiotic functions. It was isolated from a healthy Mongolian child in China. We present here the complete genome sequence of V9 and compare it to 3 other published genome sequences of B. animalis subsp. lactis strains. The result indicates the lack of polymorphism among strains of this subspecies from different continents.
Project description:Commercial probiotic bacteria must be tested for acquired antibiotic resistance elements to avoid potential transfer to pathogens. The European Food Safety Authority recommends testing resistance using microdilution culture techniques previously used to establish inhibitory thresholds for the Bifidobacterium genus. Many Bifidobacterium animalis subsp. lactis strains exhibit increased resistance to tetracycline, historically attributed to the ribosomal protection gene tet(W). However, some strains that harbor genetically identical tet(W) genes show various inhibition levels, suggesting that other genetic elements also contribute to observed differences. Here, we adapted several molecular assays to confirm the inhibition of B. animalis subsp. lactis strains Bl-04 and HN019 and employed RNA sequencing to assess the transcriptional differences related to genomic polymorphisms. We detected specific stress responses to the antibiotic by correlating ATP concentration to number of viable genome copies from droplet digital PCR and found that the bacteria were still metabolically active in high drug concentrations. Transcriptional analyses revealed that several polymorphic regions, particularly a novel multidrug efflux transporter, were differentially expressed between the strains in each experimental condition, likely having phenotypic effects. We also found that the tet(W) gene was upregulated only during subinhibitory tetracycline concentrations, while two novel tetracycline resistance genes were upregulated at high concentrations. Furthermore, many genes involved in amino acid metabolism and transporter function were upregulated, while genes for complex carbohydrate utilization, protein metabolism, and clustered regularly interspaced short palindromic repeat(s) (CRISPR)-Cas systems were downregulated. These results provide high-throughput means for assessing antibiotic resistances of two highly related probiotic strains and determine the genetic network that contributes to the global tetracycline response.IMPORTANCEBifidobacterium animalis subsp. lactis is widely used in human food and dietary supplements. Although well documented to be safe, B. animalis subsp. lactis strains must not contain transferable antibiotic resistance elements. Many B. animalis subsp. lactis strains have different resistance measurements despite being genetically similar, and the reasons for this are not well understood. In the current study, we sought to examine how genomic differences between two closely related industrial B. animalis subsp. lactis strains contribute to different resistance levels. This will lead to a better understanding of resistance, identify future targets for analysis of transferability, and expand our understanding of tetracycline resistance in bacteria.
Project description:Commercial probiotic bacteria must be tested for acquired antibiotic resistance elements to avoid potential transfer to pathogens. The European Food Safety Authority recommends testing resistance using microdilution culture techniques previously used to establish inhibitory thresholds for the Bifidobacterium genus. Many Bifidobacterium animalis subsp. lactis strains exhibit increased resistance to tetracycline, historically attributed to the ribosomal protection gene tet(W). However, some strains that harbor genetically identical tet(W) genes show various inhibition levels suggesting that other genetic elements also contribute to observed differences. Here, we adapted several molecular assays to confirm the inhibition of B. animalis subsp. lactis strains Bl-04 and HN019, and employed RNA-seq to assess the transcriptional differences related to genomic polymorphisms. We detected specific stress responses to the antibiotic by correlating ATP concentration to viable genome copies from droplet digital PCR, and found that the bacteria were still metabolically active in high drug concentrations. Transcriptional analyses revealed that several polymorphic regions, particularly a novel multi-drug efflux transporter, were differentially expressed between the strains in each experimental condition, likely having phenotypic effects. We also found that the tet(W) gene was up-regulated only during sub-inhibitory tetracycline concentrations, while two novel tetracycline resistance genes were up-regulated at high concentrations. Furthermore, many genes involved in amino acid metabolism and transporter function were up-regulated while genes for complex carbohydrate utilization, protein metabolism, and CRISPR-Cas systems were down-regulated. These results provide high-throughput means for assessing antibiotic resistance and determine the genetic network that contributes to the global tetracycline response between two highly related probiotic strains.
Project description:ObjectivesProbiotics are live microorganisms that may provide health benefits to the individual when consumed in sufficient quantities. For studies conducted on health or disease endpoints on probiotics in the United States, the Food and Administration has required those studies to be conducted as investigational new drugs. This phase I, double-blinded, randomized, controlled safety study represents the first requirement of this pathway. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp. lactis (B lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of children. The secondary aim was to assess the effect of BB-12-supplemented yogurt on the gut microbiota of the children.MethodsSixty children ages 1 to 5 years were randomly assigned to consume 4 ounces of either BB-12-supplemented yogurt or nonsupplemented control yogurt daily for 10 days. The primary outcome was to assess safety and tolerability, as determined by the number of reported adverse events.ResultsA total of 186 nonserious adverse events were reported, with no significant differences between the control and BB-12 groups. No significant changes due to probiotic treatment were observed in the gut microbiota of the study cohort.ConclusionsBB-12-supplemented yogurt is safe and well-tolerated when consumed by healthy children. The present study will form the basis for future randomized clinical trials investigating the potential effects of BB-12-supplemented yogurt in different disease states.
Project description:Bifidobacterium animalis subsp. lactis CNCM I-2494 is part of a commercialized fermented dairy product with documented health benefits revealed by multiple randomized placebo-controlled clinical trials. Here we report the complete genome sequence of this strain, which has a circular genome of 1,943,113 bp with 1,660 open reading frames and 4 ribosomal operons.
Project description:Consumer interest in probiotic bifidobacteria is increasing, but industry efforts to secure high cell viability in foods is undermined by these anaerobes' sensitivity to oxidative stress. To address this limitation, we investigated genetic and physiological responses of two fully sequenced Bifidobacterium animalis subsp. lactis strains, BL-04 and DSM 10140, to hydrogen peroxide (H₂O₂) stress. Although the genome sequences for these strains are highly clonal, prior work showed that they differ in both intrinsic and inducible H₂O₂ resistance. Transcriptome analysis of early-stationary-phase cells exposed to a sublethal H₂O₂ concentration detected significant (P < 0.05) changes in expression of 138 genes in strain BL-04 after 5 min and 27 genes after 20 min. Surprisingly, no significant changes in gene expression were detected in DSM 10140 at either time. Genomic data suggested that differences in H₂O₂ stress resistance might be due to a mutation in a BL-04 gene encoding long-chain fatty acid coenzyme A (CoA) ligase. To explore this possibility, membrane fatty acids were isolated and analyzed by gas chromatography-mass spectrometry (GC-MS). Results confirmed that the strains had significantly different lipid profiles: the BL-04 membrane contained higher percentages of C(14:0) and C(16:0) and lower percentages of C(18:1n9). Alteration of the DSM 10140 membrane lipid composition using modified growth medium to more closely mimic that of BL-04 yielded cells that showed increased intrinsic resistance to lethal H₂O₂ challenge but did not display an inducible H₂O₂ stress response. The results show that deliberate stress induction or membrane lipid modification can be employed to significantly improve H₂O₂ resistance in B. animalis subsp. lactis strains.