Project description:The current study provides the insight into the bacteria in the gastrointestinal tract (GIT) and methanogens presented in the rumen and cecum of the Chinese roe deer (Capreolus pygargus). The ruminal, ileal, cecal, and colonic contents, as well as feces, were obtained from each of the three, free-range, roe deer ingesting natural pasture after euthanasia. For the bacterial community, a total of 697,031 high-quality 16S rRNA gene sequences were generated using high-throughput sequencing, and assigned to 2,223 core operational taxonomic units (OTUs) (12 bacterial phyla and 87 genera). The phyla Firmicutes (51.2%) and Bacteroidetes (39.4%) were the dominant bacteria in the GIT of roe deer. However, the bacterial community in the rumen was significantly (P<0.01) different from the other sampled regions along the GIT. Secondly, Prevotella spp., Anaerovibrio spp., and unidentified bacteria within the families Veillonellaceae and Paraprevotellaceae were more abundant in the rumen than in the other regions. Unidentified bacteria within the family Enterobacteriaceae, Succinivibrio spp., and Desulfovibrio spp. were more predominant in the colon than in other regions. Unidentified bacteria within the family Ruminococcaceae, and Bacteroides spp. were more prevalent in the ileum, cecum and fecal pellets. For methanogens in the rumen and cecum, a total of 375,647 high quality 16S rRNA gene sequences were obtained and assigned to 113 core OTUs. Methanobrevibacter millerae was the dominant species accounting for 77.3±7.4 (S.E) % and 68.9±4.4 (S.E) % of total sequences in the rumen and cecum of roe deer, respectively. However, the abundance of Methanobrevibacter smithii was higher in the rumen than in the cecum (P = 0.004). These results revealed that there was intra variation in the bacterial community composition across the GIT of roe deer, and also showed that the methanogen community in the rumen differed from that in the cecum.
Project description:BackgroundMost eukaryotic species represent stable karyotypes with a particular diploid number. B chromosomes are additional to standard karyotypes and may vary in size, number and morphology even between cells of the same individual. For many years it was generally believed that B chromosomes found in some plant, animal and fungi species lacked active genes. Recently, molecular cytogenetic studies showed the presence of additional copies of protein-coding genes on B chromosomes. However, the transcriptional activity of these genes remained elusive. We studied karyotypes of the Siberian roe deer (Capreolus pygargus) that possess up to 14 B chromosomes to investigate the presence and expression of genes on supernumerary chromosomes.ResultsHere, we describe a 2 Mbp region homologous to cattle chromosome 3 and containing TNNI3K (partial), FPGT, LRRIQ3 and a large gene-sparse segment on B chromosomes of the Siberian roe deer. The presence of the copy of the autosomal region was demonstrated by B-specific cDNA analysis, PCR assisted mapping, cattle bacterial artificial chromosome (BAC) clone localization and quantitative polymerase chain reaction (qPCR). By comparative analysis of B-specific and non-B chromosomal sequences we discovered some B chromosome-specific mutations in protein-coding genes, which further enabled the detection of a FPGT-TNNI3K transcript expressed from duplicated genes located on B chromosomes in roe deer fibroblasts.ConclusionsDiscovery of a large autosomal segment in all B chromosomes of the Siberian roe deer further corroborates the view of an autosomal origin for these elements. Detection of a B-derived transcript in fibroblasts implies that the protein coding sequences located on Bs are not fully inactivated. The origin, evolution and effect on host of B chromosomal genes seem to be similar to autosomal segmental duplications, which reinforces the view that supernumerary chromosomal elements might play an important role in genome evolution.
Project description:Due to the multiple causes, the population of roe deer has declined significantly. In this study, we analyzed the complete mitogenome of Capreolus pygargus bedfordi, whose genome was 16,357 bp long. There were 13 protein-coding genes (PCG), two ribosomal RNA genes (12S rRNA and 16S rRNA), 22 transfer RNA genes, and one control region. Nine PCGs started with ATG, while NAD2, NAD3, and NAD5 genes commenced with ATA, and ND4L began with GTG. ND6 and eight tRNA genes were encoded on the L-strand. These results provide newer molecular information, which contribute to its molecular and phylogenetic studies, and genetic diversity conservation.
Project description:We sequenced the complete mitochondrial genome (mitogenome) of Siberian Roe Deer, Capreolus pygargus, in China by the shotgun genome-skimming methods. The mitogenome of C. pygargus is totally 16,353 bp in length and contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a control region. The sequence has a higher A + T content of 63.4% than G + C 36.6% and with a base composition of 33.4% A, 23.2% C, 13.4% G, and 30.0% T. All of the 13 PCGs initiate a typical ATN codon except Nd4L with GTG. Six PCGs terminate with a TAA codon, while Cyt b, Atp8, and Nd1 terminate with AGA, TAG, and TA-, respectively. Whereas, Cox3, Nd2, Nd3, and Nd4 terminate with a single T-. The phylogenetic trees of the subfamily Capreolinae with 13 PCGs indicated that Capreolus species were well-supported as a monophyletic group, which is sister to the clade of Hydropotes with well-support.