Project description:In this study, we map sites of replication initiation and breakage in primary cells at high resolution under conditions of replication stress. We show that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, large (>20 bp) homopolymeric (dA/dT) tracts are also preferential sites of polar replication fork stalling and collapse. We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes serves to promote replication initiation, but at the cost of increasing chromosome fragility.
Project description:In this study, we map sites of replication initiation and breakage in primary cells at high resolution under conditions of replication stress. We show that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, large (>20 bp) homopolymeric (dA/dT) tracts are also preferential sites of polar replication fork stalling and collapse. We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes serves to promote replication initiation, but at the cost of increasing chromosome fragility.
Project description:In this study, we map sites of replication initiation and breakage in primary cells at high resolution under conditions of replication stress. We show that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, large (>20 bp) homopolymeric (dA/dT) tracts are also preferential sites of polar replication fork stalling and collapse. We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes serves to promote replication initiation, but at the cost of increasing chromosome fragility.
Project description:In this study, we map sites of replication initiation and breakage in primary cells at high resolution under conditions of replication stress. We show that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, large (>20 bp) homopolymeric (dA/dT) tracts are also preferential sites of polar replication fork stalling and collapse. We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes serves to promote replication initiation, but at the cost of increasing chromosome fragility.
Project description:In this study, we map sites of replication initiation and breakage in primary cells at high resolution under conditions of replication stress. We show that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, large (>20 bp) homopolymeric (dA/dT) tracts are also preferential sites of polar replication fork stalling and collapse. We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes serves to promote replication initiation, but at the cost of increasing chromosome fragility.
Project description:In this study, we map sites of replication initiation and breakage in primary cells at high resolution under conditions of replication stress. We show that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, large (>20 bp) homopolymeric (dA/dT) tracts are also preferential sites of polar replication fork stalling and collapse. We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes serves to promote replication initiation, but at the cost of increasing chromosome fragility.
Project description:Scaffold or matrix attachment regions (S/MARs) are found in all eukaryotes. The pattern of distribution and genomic context of S/MARs is thought to be important for processes such as chromatin organization and modulation of gene expression. Despite the importance of such processes, much is unknown about the large-scale distribution and sequence content of S/ MARs in vivo. Here, we report the use of tiling microarrays to map 1358 S/MARs on Arabidopsis thaliana chromosome 4 (chr4). S/MARs occur throughout chr4, spaced much more closely than in the large plant and animal genomes that have been studied to date. Arabidopsis S/MARs can be divided into five clusters based on their association with other genomic features, suggesting a diversity of functions. While some Arabidopsis S/MARs may define structural domains, most occur near the transcription start sites of genes. Genes associated with these S/MARs have an increased probability of expression, which is particularly pronounced in the case of transcription factor genes. Analysis of sequence motifs and 6-mer enrichment patterns show that S/MARs are preferentially enriched in poly(dA:dT) tracts, sequences that resist nucleosome formation, and the majority of S/MARs contain at least one nucleosome-depleted region. This global view of S/MARs provides a framework to begin evaluating genome-scale models for S/MAR function. Contrast between DNA bound to nuclear scaffold/matrix and total genomic DNA in Arabidopsis Chr4 excluding the constitutive heterochromatin. Total of three biological replicates with two independent hybridizations on custom-designed NimbleGen high-density microarrays that include duplicate spots for each probe.
Project description:We identify the cis and trans determinants of nucleosome positioning using a functional evolutionary approach involving S. cerevisiae strains containing large genomic regions from other yeast species. In a foreign species, nucleosome depletion at promoters is maintained over poly(dA:dT) tracts, whereas internucleosome spacing and all other aspects of nucleosome positioning tested are not. Interestingly, the locations of the +1 nucleosome and RNA start sites shift in concert. Strikingly, in a foreign species, nucleosome-depleted regions occur fortuitously in coding regions, and they often act as promoters that are associated with a positioned nucleosome array linked to the length of the transcription unit.
Project description:We identify the cis and trans determinants of nucleosome positioning using a functional evolutionary approach involving S. cerevisiae strains containing large genomic regions from other yeast species. In a foreign species, nucleosome depletion at promoters is maintained over poly(dA:dT) tracts, whereas internucleosome spacing and all other aspects of nucleosome positioning tested are not. Interestingly, the locations of the +1 nucleosome and RNA start sites shift in concert. Strikingly, in a foreign species, nucleosome-depleted regions occur fortuitously in coding regions, and they often act as promoters that are associated with a positioned nucleosome array linked to the length of the transcription unit. nucleosome mapping for 3 strains bearing yeast artificial chromosomes from Kluyveromyces lactis and 2 strains with Debaryomyces hansenii artificial chromosomes in Saccharomyces cerevisiae
Project description:Scaffold or matrix attachment regions (S/MARs) are found in all eukaryotes. The pattern of distribution and genomic context of S/MARs is thought to be important for processes such as chromatin organization and modulation of gene expression. Despite the importance of such processes, much is unknown about the large-scale distribution and sequence content of S/ MARs in vivo. Here, we report the use of tiling microarrays to map 1358 S/MARs on Arabidopsis thaliana chromosome 4 (chr4). S/MARs occur throughout chr4, spaced much more closely than in the large plant and animal genomes that have been studied to date. Arabidopsis S/MARs can be divided into five clusters based on their association with other genomic features, suggesting a diversity of functions. While some Arabidopsis S/MARs may define structural domains, most occur near the transcription start sites of genes. Genes associated with these S/MARs have an increased probability of expression, which is particularly pronounced in the case of transcription factor genes. Analysis of sequence motifs and 6-mer enrichment patterns show that S/MARs are preferentially enriched in poly(dA:dT) tracts, sequences that resist nucleosome formation, and the majority of S/MARs contain at least one nucleosome-depleted region. This global view of S/MARs provides a framework to begin evaluating genome-scale models for S/MAR function.