Project description:Genome-wide identification of genes differentially expressed between control and Prdm14 overexpressing ES cells grown in serum conditions.
Project description:Embryonic stem cells from B6 and NOD backgrounds were derived freshly in the presence of 2i. After 3-5 passages on feeders, ES cells were cultured in 2i media without any feeders for several passages. In order to identify differentially expressed genes and proteins, we performed RNA-Seq and mass spectromety analysis respectively. Among the differentially expressed genes, we identified several important players in innate and adaptive immunity. Several of these genes had been linked to onset of type-1 diabetes. Proteomics analysis was able to quantitative differences in protein expression among the B6 and NOD ES cell lines.
Project description:Analysis of Prdm14 function in mouse embryonic stem cells. Prdm14 null and overexpressing ES cells were generated and analyzed by microarray, immunoflurescence, flow cytometry, ELISA, qPCR in different culture conditions.
Project description:Analysis of Prdm14 function in mouse embryonic stem cells. Prdm14 null and overexpressing ES cells were generated and analyzed by microarray, immunoflurescence, flow cytometry, ELISA, qPCR in different culture conditions.
Project description:Naive pluripotent embryonic stem cells (ESCs) and embryonic germ cells (EGCs) are derived from the preimplantation epiblast and primordial germ cells (PGCs), respectively. We investigated whether differences exist between ESCs and EGCs, in view of their distinct developmental origins. PGCs are programmed to undergo global DNA demethylation; however, we find that EGCs and ESCs exhibit equivalent global DNA methylation levels. Importantly, inhibition of Erk and Gsk3b by 2i conditions leads to pronounced reduction in DNA methylation in both cell types. This is driven by Prdm14 and is associated with downregulation of Dnmt3a and Dnmt3b. However, genomic imprints are maintained in 2i, and we report derivation of EGCs with intact genomic imprints. Collectively, our findings establish that culture in 2i instills a naive pluripotent state with a distinctive epigenetic configuration that parallels molecular features observed in both the preimplantation epiblast and nascent PGCs. EGC lines were derived from E8.5 mouse embryos using three different protocols: FCS+LIF on MEFs (FCS, n = 4)), FCS+LIF on MEFs for 48 hours followed by 2i+LIF (2is, n = 4), and direct derivation into 2i+LIF (2i, n = 4). ESC lines were derived in either FCS+LIF on MEFs or in 2i+LIF conditions and once established the cell lines were also switched between the two culture environments (n = 5 for each culture condition). All cell lines were derived from genetically identical embryos.
Project description:Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naive status. Differentiation of Rex1-GFPd2 ES cells was initiated by withdrawing 2i (Kalkan et al., 2016). Undifferentiated 2i-cells and post-2i withdrawal differentiating populations (16h, 25h-Rex1-High, 25h-Rex1-Low) were subjected to proteomic analysis by Mass Spectrometry.
Project description:ChIP-seq to map the binding sites for CTCF and cohesin subunit Rad21 in the naive mES cells (46C cell line grown in the 2i/LIF condition) and in the neural stem cells (derived from the 46C ES cells using the mono-layer differentiation protocol, grown in the N2B27 medium these cells are Nestin+). The naive mES cells were grown in two different media (fetal bovine serum, FBS and 2i/LIF culture - naive pluripotency conditions) as detailed in the growth protocols.
Project description:We report the application of single-cell and bulk RNA sequencing technology to examine the noncoding transcriptome of cells undergoing reprogramming to the pluripotent state. Examination of noncoding RNAs in reprogrammming cells. We examined iPS cells grown in standard ES cell culture conditions, as well as iPS cells grown in "2i" conditions (small molecule inhibition of Mek and Gsk3). We also compared our iPS samples to male and female ES cells (mES, fES).
Project description:Analysis of Prdm14 function in mouse embryonic stem cells. Prdm14 null and overexpressing ES cells were generated and analyzed by microarray, immunoflurescence, flow cytometry, ELISA, qPCR in different culture conditions. 2 samples (control and overexpression) were analyzed in biological triplicates
Project description:Analysis of Prdm14 function in mouse embryonic stem cells. Prdm14 null and overexpressing ES cells were generated and analyzed by microarray, immunoflurescence, flow cytometry, ELISA, qPCR in different culture conditions. 2 samples (wild-type control and knockout) were analyzed in biological triplicates