Project description:RNA-seq reads from the selfing species Arabidopsis thaliana were produced from flowers to study the consequences of the transition from the ancestral state (outcrossing) to the derived state (selfing). This was done in the context of examining another species in the Arabidopsis genus (A. lyrata) and another species pair (Capsella rubella versus Capsella grandiflora, which are selfing and outcrossing, respectively). These samples were generated to complement part of this larger study. Briefly, the shift from outcrossing to selfing is common in flowering plants, but neither the genomic consequences nor the speed with which they appear are well understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self-compatible <200,000 years ago. We present a reference genome for the species, and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor C. grandiflora. There is a clear shift in the expression of genes associated with flowering phenotypes; a similar shift is seen in the related genus Arabidopsis, where self-fertilization evolved about 1 million years ago. DNA sequence polymorphisms distinguishing the two Capsella species reveal rapid genome-wide relaxation of purifying selection in C. rubella but without a concomitant change in transposable element abundance. Overall, we document that the transition to selfing may be typified by shifts in expression for genes that function in pollen and flower development, along with a measurable reduction of purifying selection.
Project description:RNA-seq reads from the selfing species Arabidopsis thaliana were produced from flowers to study the consequences of the transition from the ancestral state (outcrossing) to the derived state (selfing). This was done in the context of examining another species in the Arabidopsis genus (A. lyrata) and another species pair (Capsella rubella versus Capsella grandiflora, which are selfing and outcrossing, respectively). These samples were generated to complement part of this larger study. Briefly, the shift from outcrossing to selfing is common in flowering plants, but neither the genomic consequences nor the speed with which they appear are well understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self-compatible <200,000 years ago. We present a reference genome for the species, and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor C. grandiflora. There is a clear shift in the expression of genes associated with flowering phenotypes; a similar shift is seen in the related genus Arabidopsis, where self-fertilization evolved about 1 million years ago. DNA sequence polymorphisms distinguishing the two Capsella species reveal rapid genome-wide relaxation of purifying selection in C. rubella but without a concomitant change in transposable element abundance. Overall, we document that the transition to selfing may be typified by shifts in expression for genes that function in pollen and flower development, along with a measurable reduction of purifying selection. As part of a cross-species comparison of gene expression, RNA-seq data was generated in biological replication (2 replicates) from Arabidopsis thaliana at the floral stage. In total, two samples (biological replicates) were used. The reference strain was used for the experments (strain Col-0). Resulting data about gene expression was used as part of a larger study. The Capsella rubella and Capsella grandiflora data are included in GEO Series GSE45518.
Project description:RNA-seq reads from the outcrossing species Arabidopsis lyrata were produced from flowers to study the consequences of the transition from the ancestral state (outcrossing) to the derived state (selfing) that is observed in the sister species Arabidopsis thaliana. This was done in the context of examining another species pair (Capsella rubella versus Capsella grandiflora, which are selfing and outcrossing, respectively). These samples were generated to complement part of this larger study. Briefly, the shift from outcrossing to selfing is common in flowering plants, but neither the genomic consequences nor the speed with which they appear are well understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self-compatible <200,000 years ago. We present a reference genome for the species, and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor C. grandiflora. There is a clear shift in the expression of genes associated with flowering phenotypes; a similar shift is seen in the related genus Arabidopsis, where self-fertilization evolved about 1 million years ago. DNA sequence polymorphisms distinguishing the two Capsella species reveal rapid genome-wide relaxation of purifying selection in C. rubella but without a concomitant change in transposable element abundance. Overall, we document that the transition to selfing may be typified by shifts in expression for genes that function in pollen and flower development, along with a measurable reduction of purifying selection.
Project description:RNA-seq reads from the outcrossing species Arabidopsis lyrata were produced from flowers to study the consequences of the transition from the ancestral state (outcrossing) to the derived state (selfing) that is observed in the sister species Arabidopsis thaliana. This was done in the context of examining another species pair (Capsella rubella versus Capsella grandiflora, which are selfing and outcrossing, respectively). These samples were generated to complement part of this larger study. Briefly, the shift from outcrossing to selfing is common in flowering plants, but neither the genomic consequences nor the speed with which they appear are well understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self-compatible <200,000 years ago. We present a reference genome for the species, and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor C. grandiflora. There is a clear shift in the expression of genes associated with flowering phenotypes; a similar shift is seen in the related genus Arabidopsis, where self-fertilization evolved about 1 million years ago. DNA sequence polymorphisms distinguishing the two Capsella species reveal rapid genome-wide relaxation of purifying selection in C. rubella but without a concomitant change in transposable element abundance. Overall, we document that the transition to selfing may be typified by shifts in expression for genes that function in pollen and flower development, along with a measurable reduction of purifying selection. As part of a cross-species comparison of gene expression, RNA-seq data was generated in biological replication (2 replicates) from Arabidopsis lyrata at the floral stage. In total, two samples (biological replicates) were used. The reference strain was used for the experments (strain MN47). Resulting data about gene expression was used as part of a larger study. The Capsella rubella and Capsella grandiflora data are included in GEO Series GSE45518.
Project description:Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. The presented model is a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. The Petri net formalism was used to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs were applied. Based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism, the core metabolism of Arabidopsis thaliana was formulated. Each reaction (transition) is experimentally proven. The complete Petri net model consists of 134 metabolites, represented by places, and 243 reactions, represented by transitions. Places and transitions are connected via 572 edges.
Project description:The aim of this study was to analyze the impact of autotetraploidy on gene expression in Arabidopsis thaliana by comparing diploid versus tetraploid transcriptomes. In particular, this included the comparison of the transcriptome of different tetraploid A. thaliana ecotypes (Col-0 vs. Ler-0). The study was extended to address further aspects. One was the comparison of the transcriptomes in subsequent generations. This intended to obtain information on the genome wide stability of autotetraploid gene expression. Another line of work compared the transcriptomes of different diploid vs. tetraploid tissues. This aimed to investigate whether particular gene groups are specifically affected during the development of A. thaliana autotetraploids. Samples 1-8: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 9-12: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 13-24: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 25-32: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 33-36: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Ler-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 37-40: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Col-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 41-44: Arabidopsis thaliana Col-0/Ler-0 diploid transcriptome. Transcriptional profiling and comparison of diploid Col-0 vs. diploid Ler-0 seedlings. The experiment was carried out with pedigree of esrablished lines. Samples 45-48: Arabidopsis thaliana Col-0/Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid Col-0 vs tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 and Ler-0 lines.
Project description:Karrikins promote seed germination in Arabidopsis thaliana. Completion of germination (protrusion of the radicle) is not observed until ~72 h in dormant wildtype seed under these conditions. We used microarrays to examine karrikin-induced transcriptional changes after 24 h of imbibition. Transcriptional changes may indicate events leading to karrikin-induced germination or karrikin-specific markers.