Project description:The endangered California Condor (Gymnogyps californianus) is the largest New World Vulture in North America. Despite recovery program success in saving the species from extinction, condors remain compromised by lead poisoning and limited genetic diversity. The latter makes this species especially vulnerable to infectious diseases. Thus, taking advantage of the program of blood lead testing in Arizona, condor blood samples from 2008 to 2018 were screened for haemosporidian parasites using a nested polymerase chain reaction (PCR) protocol that targets the parasite mitochondrial cytochrome b gene. Plasmodium homopolare (Family Plasmodiidae, Order Haemosporida, Phylum Apicomplexa), was detected in condors captured in 2014 and 2017. This is the first report of a haemosporidian species infecting California Condors, and the first evidence of P. homopolare circulating in the Condor population from Arizona. Although no evidence of pathogenicity of P. homopolare in Condors was found, this study showed that the California Condors from Arizona are exposed to haemosporidian parasites that likely are spilling over from other local bird species. Thus, active surveillance should be an essential part of conservation efforts to mitigate the impact of infectious diseases, an increasingly recognized cause of global wildlife extinctions worldwide, particularly in avian populations considered vulnerable or endangered.
Project description:The Malayan pangolin (Manis javanica), an unusual mammal that is a scale-covered, toothless specialist myrmecophage, is maintained primarily through captive breeding in China. Maintaining this species in captivity is a significant challenge partly because little is known about its behavior and reproduction. The molecular mechanisms of its digestive system play a key role in the feeding and dietary husbandry of pangolins in captivity. Here, we performed the first large-scale sequencing of M. javanica transcriptomes from three digestive organs—the salivary glands, liver, and small intestine—by using Illumina HiSeq technology- to provides useful genetic resources for future functional work that may be relevant for the maintenance of captive pangolins.
Project description:Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus) within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas). Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection) and negative (avoidance) effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status) or components of the species management program (i.e., release site, rearing method) relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development). Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize their risk to this critically endangered species.
Project description:Vertebrates respond to stressful stimuli with the secretion of glucocorticoid (GC) hormones, such as corticosterone (CORT), and measurements of these hormones in wild species can provide insight into physiological responses to environmental and human-induced stressors. California condors (Gymnogyps californianus) are a critically endangered and intensively managed avian species for which information on GC response to stress is lacking. Here we evaluated a commercially available I125 double antibody radioimmunoassay (RIA) and an enzyme-linked immunosorbent assay (ELISA) kit for measurement of CORT and GC metabolites (GCM) in California condor plasma, urate, and feather samples. The precision and accuracy of the RIA assay outperformed the ELISA for CORT and GCM measurements, and CORT and GCM values were not comparable between the two assays for any sample type. RIA measurements of total CORT in condor plasma collected from 41 condors within 15 minutes of a handling stressor were highly variable (median = 70 ng/mL, range = 1-189 ng/mL) and significantly different between wild and captive condors (p = 0.02, two-tailed t-test, n = 10 wild and 11 captive). Urate GCM levels (median = 620 ng/g dry wt., range = 0.74-7200 ng/g dry wt., n = 216) significantly increased within 2 hr of the acute handling stressor (p = 0.032, n = 11 condors, one-tailed paired t-test), while feather section CORT concentrations (median = 18 pg/mm, range = 6.3-68 ng/g, n = 37) also varied widely within and between feathers. Comparison of multiple regression linear models shows condor age as a significant predictors of plasma CORT levels, while age, sex, and plasma CORT levels predicted GCM levels in urates collected within 30 min of the start of handling. Our findings highlight the need for validation when selecting an immunoassay for use with a new species, and suggest that non-invasively collected urates and feathers hold promise for assessing condor responses to acute or chronic environmental and human-induced stressors.
Project description:Captive breeding is one of the most effective ways of ensuring the conservation of several endangered species. However, only a few studies have explored the effects of living in captivity on animals at the molecular level. In the present study, the isobaric tags for relative and absolute quantification (iTRAQ) approach was applied to compare protein expression in the blood of endangered spotted seal pups (Phoca largha) inhabiting different environments. We identified 519 proteins from 2,628 peptides. The expression of 158 proteins significantly differed between seals in temporary captivity and those in the wild. In addition, 140 proteins were differentially expressed between seals in temporary captivity and those in long-term captivity, and 235 proteins were differentially expressed between the wild and long-term captive groups (p < 0.05). In seal pups in the wild, proteins associated with maintaining cell stability and integrity of cardiomyocytes, protecting the heart, and preventing anaemia were upregulated, reflecting the high stress and energetic costs of moving and foraging. In addition, significant differences were detected in immune-related proteins among the three groups. The results of this study expand our understanding of protein expression profiles in spotted seals and provide data to support future conservation of this species.