Project description:Lysinibacillus sphaericus produces the mosquito larvicidal binary toxin consisting of BinA and BinB, which are both required for toxicity against Culex and Anopheles larvae. The molecular mechanisms behind Bin toxin-induced damage remain unexplored. We used whole-genome microarray-based transcriptome analysis to better understand how Culex larvae respond to Bin toxin treatment at the molecular level. Our analyses of Culex quinquefasciatus larvae transcriptome changes at 6, 12, and 18 h after Bin toxin treatment revealed a wide range of transcript signatures, including genes linked to the cytoskeleton, metabolism, immunity, and cellular stress, with a greater number of down-regulated genes than up-regulated genes. Bin toxin appears to mainly repress the expression of genes involved in metabolism, the mitochondrial electron transport chain, and the protein transporter of the outer/inner mitochondrial membrane. The induced genes encode proteins linked to mitochondrial-mediated apoptosis and cellular detoxification including autophagic processes and lysosomal compartments.
Project description:Bacillus sphaericus cannot metabolize sugar since it lacks several of the enzymes necessary for glycolysis. Our results confirmed the presence of a glucokinase-encoding gene, glcK, and a phosphofructokinase-encoding gene, pfk, on the bacterial chromosome and expression of glucokinase during vegetative growth of B. sphaericus strains. However, no phosphoglucose isomerase gene (pgi) or phosphoglucose isomerase enzyme activity was detected in these strains. Furthermore, one glcK open reading frame was cloned from B. sphaericus strain C3-41 and then expressed in Escherichia coli. Biochemical analysis revealed that this gene encoded a protein with a molecular mass of 33 kDa and that the purified recombinant glucokinase had K(m) values of 0.52 and 0.31 mM for ATP and glucose, respectively. It has been proved that this ATP-dependent glucokinase can also phosphorylate fructose and mannose, and sequence alignment of the glcK gene indicated that it belongs to the ROK protein family. It is postulated that the absence of the phosphoglucose isomerase-encoding gene pgi in B. sphaericus might be one of the reasons for the inability of this bacterium to metabolize carbohydrates. Our findings provide additional data that further elucidate the specific metabolic pathway and could be used for genetic improvement of B. sphaericus.
Project description:The binding affinities and specificities of six truncated S-layer homology domain (SLH) polypeptides of mosquitocidal Bacillus sphaericus strain C3-41 with the purified cell wall sacculi have been assayed. The results indicated that the SLH polypeptide comprised of amino acids 31 to 210 was responsible for anchoring the S-layer subunits to the rigid cell wall layer via a distinct type of secondary cell wall polymer and that a motif of the recombinant SLH polypeptide comprising amino acids 152 to 210 (rSLH(152-210)) was essential for the stable binding of the S-layer with the bacterial cell walls. The quantitative assays revealed that the K(D) (equilibrium dissociation constant) values of rSLH(152-210) and rSLH(31-210) with purified cell wall sacculi were 1.11 x 10(-6) M and 1.40 x 10(-6) M, respectively. The qualitative assays demonstrated that the SLH domain of strain C3-41 could bind only to the cell walls or the cells treated with 5 M guanidinium hydrochloride of both toxic and nontoxic B. sphaericus strains but not to those from other bacteria, indicating the species-specific binding of the SLH polypeptide of B. sphaericus with bacterial cell walls.
Project description:Transcriptional profiling of Caenorhabditis elegans comparing control E. coli OP50-fed C. elegans with L. sphaericus-fed C. elegans Two-condition experiment, E. coli OP50-fed C. elegans vs. L. sphaericus-fed C. elegans
Project description:Transcriptional profiling of Caenorhabditis elegans comparing control E. coli OP50-fed C. elegans with L. sphaericus-fed C. elegans
Project description:Bacillus sphaericus strain C3-41 is an aerobic, mesophilic, spore-forming bacterium that has been used with great success in mosquito control programs worldwide. Genome sequencing revealed that the complete genome of this entomopathogenic bacterium is composed of a chromosomal replicon of 4,639,821 bp and a plasmid replicon of 177,642 bp, containing 4,786 and 186 potential protein-coding sequences, respectively. Comparison of the genome with other published sequences indicated that the B. sphaericus C3-41 chromosome is most similar to that of Bacillus sp. strain NRRL B-14905, a marine species that, like B. sphaericus, is unable to metabolize polysaccharides. The lack of key enzymes and sugar transport systems in the two bacteria appears to be the main reason for this inability, and the abundance of proteolytic enzymes and transport systems may endow these bacteria with exclusive metabolic pathways for a wide variety of organic compounds and amino acids. The genes shared between B. sphaericus C3-41 and Bacillus sp. strain NRRL B-14905, including mobile genetic elements, membrane-associated proteins, and transport systems, demonstrated that these two species are a biologically and phylogenetically divergent group. Knowledge of the genome sequence of B. sphaericus C3-41 thus increases our understanding of the bacilli and may also offer prospects for future genetic improvement of this important biological control agent.
Project description:Lysinibacillus sphaericus is a species that contains strains widely used in the biological control of mosquitoes. Here, we present the complete 4.67-Mb genome of the WHO entomopathogenic reference strain L. sphaericus 2362, which is probably one of the most commercialized and studied strains. Genes coding for mosquitocidal toxin proteins were detected.
Project description:BackgroundEarly in the 1990s, it was recognized that Lysinibacillus sphaericus, one of the most popular and effective entomopathogenic bacteria, was a highly heterogeneous group. Many authors have even proposed it comprises more than one species, but the lack of phenotypic traits that guarantee an accurate differentiation has not allowed this issue to be clarified. Now that genomic technologies are rapidly advancing, it is possible to address the problem from a whole genome perspective, getting insights into the phylogeny, evolutive history and biology itself.ResultsThe genome of the Colombian strain L. sphaericus OT4b.49 was sequenced, assembled and annotated, obtaining 3 chromosomal contigs and no evidence of plasmids. Using these sequences and the 13 other L. sphaericus genomes available on the NCBI database, we carried out comparative genomic analyses that included whole genome alignments, searching for mobile elements, phylogenomic metrics (TETRA, ANI and in-silico DDH) and pan-genome assessments. The results support the hypothesis about this species as a very heterogeneous group. The entomopathogenic lineage is actually a single and independent species with 3728 core genes and 2153 accessory genes, whereas each non-toxic strain seems to be a separate species, though without a clear circumscription. Toxin-encoding genes, binA, B and mtx1, 2, 3 could be acquired via horizontal gene transfer in a single evolutionary event. The non-toxic strain OT4b.31 is the most related with the type strain KCTC 3346.ConclusionsThe current L. sphaericus is actually a sensu lato due to a sub-estimation of diversity accrued using traditional non-genomics based classification strategies. The toxic lineage is the most studied with regards to its larvicidal activity, which is a greatly conserved trait among these strains and thus, their differentiating feature. Further studies are needed in order to establish a univocal classification of the non-toxic strains that, according to our results, seem to be a paraphyletic group.