Project description:The coding transcriptomes of filamentous cultures of the maize smut fungus Ustilago maydis and their extracellular vesicles (EVs) were compared. Protein-coding transcripts relatively enriched in EVs versus filament cells were identified and examined to identify potentially functional mRNA cargos of U. maydis EVs.
Project description:Rice false smut, caused by the pathogenic ascomycete fungus Ustilaginoidea virens (teleomorph: Villosiclava virens), is one of the most devastating grain diseases in the majority of rice-growing areas of the world. Lysine 2-hydroxyisobutyrylation (Khib) is a novel post-translational modification (PTM), which plays an important role in active gene transcription and cellular proliferation in eukaryotes. However, its function remains unknown in phytopathogens and plant. Here, we report a comprehensive identification of Khib in rice false smut fungus Ustilaginoidea virens and rice. By using a tandem mass tags (TMT)–based quantitative proteomics approach, 2-hydroxyisobutyrylation sites were identified in U. virens and rice.
Project description:Ustilago maydis, the causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic haploid budding form, and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing highly modified tumorous structures and it is only within these plant galls that the fungus sporulates giving rise to melanized sexual spores, the teliospores. Previously we identified a regulatory protein from the APSES family of transcription factors, which we named Ust1, whose absence in yeast cells led to filamentous growth and the production of highly pigmented spore-like structures in culture. In this study, we analyzed the transcriptome of a ∆ust1 deletion mutant.
Project description:According to the key words, the gene set, including oxidation-reduction, RNA silence, disease resistance, phytohormone, phosphorylation, dephosphorylation, transcription factor, receptor, kinase, ubiquitination and RNA binding,etc. from sugarcane and the whole CDS sequence from smut genome, was achieved and used as targets in the present microarray assay. Based on smut infection samples from smut-susceptible sugarcane genotype YC71-374 and smut-resistant sugarcane genotype NCo376, the hybridization was conducted and validated by real-time fluorescent quantitative PCR. It would provide a basic data for the study on sugarcane-smut interaction mechanism, which referred to sugarcane smut resistance and smut pathogenesis.
Project description:Ustilago maydis is a basidiomycete fungus that causes smut disease in maize. Most prominent symptoms of the disease are plant tumors, which can be induced by U. maydis on all aerial parts of the plant. We identified two linked genes, pit1 and pit2, which are specifically expressed during plant colonization. Deletion mutants for either pit1 or pit2 are unable to induce tumor development and elicit plant defense responses. We used the Affymetrix maize genome array to analyze the transcriptional responses of maize to deletion pit1 and pit2 mutants and found plant responses to both mutants being not significantly distinguishable.
Project description:Head smut of maize, which is caused by the Sporisorium reilianum f. sp. Zeae (Kühn), has been a serious disease in maize. In order to find head smut resistant candidate genes, microarrays were used to monitor the gene expression profiles between disease resistant near isogenic lines (NIL) L282 and L43, highly resistant inbred line Q319 and highly susceptible inbred line Huangzao4 after 0 to7 days post inoculation of S.reiliana by artificial inoculation method. Maize leaves were selected at 0d, 1d, 2d, 4d, 7d post inoculation for RNA extraction and hybridization on Affymetrix microarrays. We sought to obtain different expression genes of different varieties at each inoculation stage in order to find head smut resistant candidate genes.